rfc2046.txt
103 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
Network Working Group N. Freed
Request for Comments: 2046 Innosoft
Obsoletes: 1521, 1522, 1590 N. Borenstein
Category: Standards Track First Virtual
November 1996
Multipurpose Internet Mail Extensions
(MIME) Part Two:
Media Types
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Abstract
STD 11, RFC 822 defines a message representation protocol specifying
considerable detail about US-ASCII message headers, but which leaves
the message content, or message body, as flat US-ASCII text. This
set of documents, collectively called the Multipurpose Internet Mail
Extensions, or MIME, redefines the format of messages to allow for
(1) textual message bodies in character sets other than
US-ASCII,
(2) an extensible set of different formats for non-textual
message bodies,
(3) multi-part message bodies, and
(4) textual header information in character sets other than
US-ASCII.
These documents are based on earlier work documented in RFC 934, STD
11, and RFC 1049, but extends and revises them. Because RFC 822 said
so little about message bodies, these documents are largely
orthogonal to (rather than a revision of) RFC 822.
The initial document in this set, RFC 2045, specifies the various
headers used to describe the structure of MIME messages. This second
document defines the general structure of the MIME media typing
system and defines an initial set of media types. The third document,
RFC 2047, describes extensions to RFC 822 to allow non-US-ASCII text
Freed & Borenstein Standards Track [Page 1]
RFC 2046 Media Types November 1996
data in Internet mail header fields. The fourth document, RFC 2048,
specifies various IANA registration procedures for MIME-related
facilities. The fifth and final document, RFC 2049, describes MIME
conformance criteria as well as providing some illustrative examples
of MIME message formats, acknowledgements, and the bibliography.
These documents are revisions of RFCs 1521 and 1522, which themselves
were revisions of RFCs 1341 and 1342. An appendix in RFC 2049
describes differences and changes from previous versions.
Table of Contents
1. Introduction ......................................... 3
2. Definition of a Top-Level Media Type ................. 4
3. Overview Of The Initial Top-Level Media Types ........ 4
4. Discrete Media Type Values ........................... 6
4.1 Text Media Type ..................................... 6
4.1.1 Representation of Line Breaks ..................... 7
4.1.2 Charset Parameter ................................. 7
4.1.3 Plain Subtype ..................................... 11
4.1.4 Unrecognized Subtypes ............................. 11
4.2 Image Media Type .................................... 11
4.3 Audio Media Type .................................... 11
4.4 Video Media Type .................................... 12
4.5 Application Media Type .............................. 12
4.5.1 Octet-Stream Subtype .............................. 13
4.5.2 PostScript Subtype ................................ 14
4.5.3 Other Application Subtypes ........................ 17
5. Composite Media Type Values .......................... 17
5.1 Multipart Media Type ................................ 17
5.1.1 Common Syntax ..................................... 19
5.1.2 Handling Nested Messages and Multiparts ........... 24
5.1.3 Mixed Subtype ..................................... 24
5.1.4 Alternative Subtype ............................... 24
5.1.5 Digest Subtype .................................... 26
5.1.6 Parallel Subtype .................................. 27
5.1.7 Other Multipart Subtypes .......................... 28
5.2 Message Media Type .................................. 28
5.2.1 RFC822 Subtype .................................... 28
5.2.2 Partial Subtype ................................... 29
5.2.2.1 Message Fragmentation and Reassembly ............ 30
5.2.2.2 Fragmentation and Reassembly Example ............ 31
5.2.3 External-Body Subtype ............................. 33
5.2.4 Other Message Subtypes ............................ 40
6. Experimental Media Type Values ....................... 40
7. Summary .............................................. 41
8. Security Considerations .............................. 41
9. Authors' Addresses ................................... 42
Freed & Borenstein Standards Track [Page 2]
RFC 2046 Media Types November 1996
A. Collected Grammar .................................... 43
1. Introduction
The first document in this set, RFC 2045, defines a number of header
fields, including Content-Type. The Content-Type field is used to
specify the nature of the data in the body of a MIME entity, by
giving media type and subtype identifiers, and by providing auxiliary
information that may be required for certain media types. After the
type and subtype names, the remainder of the header field is simply a
set of parameters, specified in an attribute/value notation. The
ordering of parameters is not significant.
In general, the top-level media type is used to declare the general
type of data, while the subtype specifies a specific format for that
type of data. Thus, a media type of "image/xyz" is enough to tell a
user agent that the data is an image, even if the user agent has no
knowledge of the specific image format "xyz". Such information can
be used, for example, to decide whether or not to show a user the raw
data from an unrecognized subtype -- such an action might be
reasonable for unrecognized subtypes of "text", but not for
unrecognized subtypes of "image" or "audio". For this reason,
registered subtypes of "text", "image", "audio", and "video" should
not contain embedded information that is really of a different type.
Such compound formats should be represented using the "multipart" or
"application" types.
Parameters are modifiers of the media subtype, and as such do not
fundamentally affect the nature of the content. The set of
meaningful parameters depends on the media type and subtype. Most
parameters are associated with a single specific subtype. However, a
given top-level media type may define parameters which are applicable
to any subtype of that type. Parameters may be required by their
defining media type or subtype or they may be optional. MIME
implementations must also ignore any parameters whose names they do
not recognize.
MIME's Content-Type header field and media type mechanism has been
carefully designed to be extensible, and it is expected that the set
of media type/subtype pairs and their associated parameters will grow
significantly over time. Several other MIME facilities, such as
transfer encodings and "message/external-body" access types, are
likely to have new values defined over time. In order to ensure that
the set of such values is developed in an orderly, well-specified,
and public manner, MIME sets up a registration process which uses the
Internet Assigned Numbers Authority (IANA) as a central registry for
MIME's various areas of extensibility. The registration process for
these areas is described in a companion document, RFC 2048.
Freed & Borenstein Standards Track [Page 3]
RFC 2046 Media Types November 1996
The initial seven standard top-level media type are defined and
described in the remainder of this document.
2. Definition of a Top-Level Media Type
The definition of a top-level media type consists of:
(1) a name and a description of the type, including
criteria for whether a particular type would qualify
under that type,
(2) the names and definitions of parameters, if any, which
are defined for all subtypes of that type (including
whether such parameters are required or optional),
(3) how a user agent and/or gateway should handle unknown
subtypes of this type,
(4) general considerations on gatewaying entities of this
top-level type, if any, and
(5) any restrictions on content-transfer-encodings for
entities of this top-level type.
3. Overview Of The Initial Top-Level Media Types
The five discrete top-level media types are:
(1) text -- textual information. The subtype "plain" in
particular indicates plain text containing no
formatting commands or directives of any sort. Plain
text is intended to be displayed "as-is". No special
software is required to get the full meaning of the
text, aside from support for the indicated character
set. Other subtypes are to be used for enriched text in
forms where application software may enhance the
appearance of the text, but such software must not be
required in order to get the general idea of the
content. Possible subtypes of "text" thus include any
word processor format that can be read without
resorting to software that understands the format. In
particular, formats that employ embeddded binary
formatting information are not considered directly
readable. A very simple and portable subtype,
"richtext", was defined in RFC 1341, with a further
revision in RFC 1896 under the name "enriched".
Freed & Borenstein Standards Track [Page 4]
RFC 2046 Media Types November 1996
(2) image -- image data. "Image" requires a display device
(such as a graphical display, a graphics printer, or a
FAX machine) to view the information. An initial
subtype is defined for the widely-used image format
JPEG. . subtypes are defined for two widely-used image
formats, jpeg and gif.
(3) audio -- audio data. "Audio" requires an audio output
device (such as a speaker or a telephone) to "display"
the contents. An initial subtype "basic" is defined in
this document.
(4) video -- video data. "Video" requires the capability
to display moving images, typically including
specialized hardware and software. An initial subtype
"mpeg" is defined in this document.
(5) application -- some other kind of data, typically
either uninterpreted binary data or information to be
processed by an application. The subtype "octet-
stream" is to be used in the case of uninterpreted
binary data, in which case the simplest recommended
action is to offer to write the information into a file
for the user. The "PostScript" subtype is also defined
for the transport of PostScript material. Other
expected uses for "application" include spreadsheets,
data for mail-based scheduling systems, and languages
for "active" (computational) messaging, and word
processing formats that are not directly readable.
Note that security considerations may exist for some
types of application data, most notably
"application/PostScript" and any form of active
messaging. These issues are discussed later in this
document.
The two composite top-level media types are:
(1) multipart -- data consisting of multiple entities of
independent data types. Four subtypes are initially
defined, including the basic "mixed" subtype specifying
a generic mixed set of parts, "alternative" for
representing the same data in multiple formats,
"parallel" for parts intended to be viewed
simultaneously, and "digest" for multipart entities in
which each part has a default type of "message/rfc822".
Freed & Borenstein Standards Track [Page 5]
RFC 2046 Media Types November 1996
(2) message -- an encapsulated message. A body of media
type "message" is itself all or a portion of some kind
of message object. Such objects may or may not in turn
contain other entities. The "rfc822" subtype is used
when the encapsulated content is itself an RFC 822
message. The "partial" subtype is defined for partial
RFC 822 messages, to permit the fragmented transmission
of bodies that are thought to be too large to be passed
through transport facilities in one piece. Another
subtype, "external-body", is defined for specifying
large bodies by reference to an external data source.
It should be noted that the list of media type values given here may
be augmented in time, via the mechanisms described above, and that
the set of subtypes is expected to grow substantially.
4. Discrete Media Type Values
Five of the seven initial media type values refer to discrete bodies.
The content of these types must be handled by non-MIME mechanisms;
they are opaque to MIME processors.
4.1. Text Media Type
The "text" media type is intended for sending material which is
principally textual in form. A "charset" parameter may be used to
indicate the character set of the body text for "text" subtypes,
notably including the subtype "text/plain", which is a generic
subtype for plain text. Plain text does not provide for or allow
formatting commands, font attribute specifications, processing
instructions, interpretation directives, or content markup. Plain
text is seen simply as a linear sequence of characters, possibly
interrupted by line breaks or page breaks. Plain text may allow the
stacking of several characters in the same position in the text.
Plain text in scripts like Arabic and Hebrew may also include
facilitites that allow the arbitrary mixing of text segments with
opposite writing directions.
Beyond plain text, there are many formats for representing what might
be known as "rich text". An interesting characteristic of many such
representations is that they are to some extent readable even without
the software that interprets them. It is useful, then, to
distinguish them, at the highest level, from such unreadable data as
images, audio, or text represented in an unreadable form. In the
absence of appropriate interpretation software, it is reasonable to
show subtypes of "text" to the user, while it is not reasonable to do
so with most nontextual data. Such formatted textual data should be
represented using subtypes of "text".
Freed & Borenstein Standards Track [Page 6]
RFC 2046 Media Types November 1996
4.1.1. Representation of Line Breaks
The canonical form of any MIME "text" subtype MUST always represent a
line break as a CRLF sequence. Similarly, any occurrence of CRLF in
MIME "text" MUST represent a line break. Use of CR and LF outside of
line break sequences is also forbidden.
This rule applies regardless of format or character set or sets
involved.
NOTE: The proper interpretation of line breaks when a body is
displayed depends on the media type. In particular, while it is
appropriate to treat a line break as a transition to a new line when
displaying a "text/plain" body, this treatment is actually incorrect
for other subtypes of "text" like "text/enriched" [RFC-1896].
Similarly, whether or not line breaks should be added during display
operations is also a function of the media type. It should not be
necessary to add any line breaks to display "text/plain" correctly,
whereas proper display of "text/enriched" requires the appropriate
addition of line breaks.
NOTE: Some protocols defines a maximum line length. E.g. SMTP [RFC-
821] allows a maximum of 998 octets before the next CRLF sequence.
To be transported by such protocols, data which includes too long
segments without CRLF sequences must be encoded with a suitable
content-transfer-encoding.
4.1.2. Charset Parameter
A critical parameter that may be specified in the Content-Type field
for "text/plain" data is the character set. This is specified with a
"charset" parameter, as in:
Content-type: text/plain; charset=iso-8859-1
Unlike some other parameter values, the values of the charset
parameter are NOT case sensitive. The default character set, which
must be assumed in the absence of a charset parameter, is US-ASCII.
The specification for any future subtypes of "text" must specify
whether or not they will also utilize a "charset" parameter, and may
possibly restrict its values as well. For other subtypes of "text"
than "text/plain", the semantics of the "charset" parameter should be
defined to be identical to those specified here for "text/plain",
i.e., the body consists entirely of characters in the given charset.
In particular, definers of future "text" subtypes should pay close
attention to the implications of multioctet character sets for their
subtype definitions.
Freed & Borenstein Standards Track [Page 7]
RFC 2046 Media Types November 1996
The charset parameter for subtypes of "text" gives a name of a
character set, as "character set" is defined in RFC 2045. The rules
regarding line breaks detailed in the previous section must also be
observed -- a character set whose definition does not conform to
these rules cannot be used in a MIME "text" subtype.
An initial list of predefined character set names can be found at the
end of this section. Additional character sets may be registered
with IANA.
Other media types than subtypes of "text" might choose to employ the
charset parameter as defined here, but with the CRLF/line break
restriction removed. Therefore, all character sets that conform to
the general definition of "character set" in RFC 2045 can be
registered for MIME use.
Note that if the specified character set includes 8-bit characters
and such characters are used in the body, a Content-Transfer-Encoding
header field and a corresponding encoding on the data are required in
order to transmit the body via some mail transfer protocols, such as
SMTP [RFC-821].
The default character set, US-ASCII, has been the subject of some
confusion and ambiguity in the past. Not only were there some
ambiguities in the definition, there have been wide variations in
practice. In order to eliminate such ambiguity and variations in the
future, it is strongly recommended that new user agents explicitly
specify a character set as a media type parameter in the Content-Type
header field. "US-ASCII" does not indicate an arbitrary 7-bit
character set, but specifies that all octets in the body must be
interpreted as characters according to the US-ASCII character set.
National and application-oriented versions of ISO 646 [ISO-646] are
usually NOT identical to US-ASCII, and in that case their use in
Internet mail is explicitly discouraged. The omission of the ISO 646
character set from this document is deliberate in this regard. The
character set name of "US-ASCII" explicitly refers to the character
set defined in ANSI X3.4-1986 [US- ASCII]. The new international
reference version (IRV) of the 1991 edition of ISO 646 is identical
to US-ASCII. The character set name "ASCII" is reserved and must not
be used for any purpose.
NOTE: RFC 821 explicitly specifies "ASCII", and references an earlier
version of the American Standard. Insofar as one of the purposes of
specifying a media type and character set is to permit the receiver
to unambiguously determine how the sender intended the coded message
to be interpreted, assuming anything other than "strict ASCII" as the
default would risk unintentional and incompatible changes to the
semantics of messages now being transmitted. This also implies that
Freed & Borenstein Standards Track [Page 8]
RFC 2046 Media Types November 1996
messages containing characters coded according to other versions of
ISO 646 than US-ASCII and the 1991 IRV, or using code-switching
procedures (e.g., those of ISO 2022), as well as 8bit or multiple
octet character encodings MUST use an appropriate character set
specification to be consistent with MIME.
The complete US-ASCII character set is listed in ANSI X3.4- 1986.
Note that the control characters including DEL (0-31, 127) have no
defined meaning in apart from the combination CRLF (US-ASCII values
13 and 10) indicating a new line. Two of the characters have de
facto meanings in wide use: FF (12) often means "start subsequent
text on the beginning of a new page"; and TAB or HT (9) often (though
not always) means "move the cursor to the next available column after
the current position where the column number is a multiple of 8
(counting the first column as column 0)." Aside from these
conventions, any use of the control characters or DEL in a body must
either occur
(1) because a subtype of text other than "plain"
specifically assigns some additional meaning, or
(2) within the context of a private agreement between the
sender and recipient. Such private agreements are
discouraged and should be replaced by the other
capabilities of this document.
NOTE: An enormous proliferation of character sets exist beyond US-
ASCII. A large number of partially or totally overlapping character
sets is NOT a good thing. A SINGLE character set that can be used
universally for representing all of the world's languages in Internet
mail would be preferrable. Unfortunately, existing practice in
several communities seems to point to the continued use of multiple
character sets in the near future. A small number of standard
character sets are, therefore, defined for Internet use in this
document.
The defined charset values are:
(1) US-ASCII -- as defined in ANSI X3.4-1986 [US-ASCII].
(2) ISO-8859-X -- where "X" is to be replaced, as
necessary, for the parts of ISO-8859 [ISO-8859]. Note
that the ISO 646 character sets have deliberately been
omitted in favor of their 8859 replacements, which are
the designated character sets for Internet mail. As of
the publication of this document, the legitimate values
for "X" are the digits 1 through 10.
Freed & Borenstein Standards Track [Page 9]
RFC 2046 Media Types November 1996
Characters in the range 128-159 has no assigned meaning in ISO-8859-
X. Characters with values below 128 in ISO-8859-X have the same
assigned meaning as they do in US-ASCII.
Part 6 of ISO 8859 (Latin/Arabic alphabet) and part 8 (Latin/Hebrew
alphabet) includes both characters for which the normal writing
direction is right to left and characters for which it is left to
right, but do not define a canonical ordering method for representing
bi-directional text. The charset values "ISO-8859-6" and "ISO-8859-
8", however, specify that the visual method is used [RFC-1556].
All of these character sets are used as pure 7bit or 8bit sets
without any shift or escape functions. The meaning of shift and
escape sequences in these character sets is not defined.
The character sets specified above are the ones that were relatively
uncontroversial during the drafting of MIME. This document does not
endorse the use of any particular character set other than US-ASCII,
and recognizes that the future evolution of world character sets
remains unclear.
Note that the character set used, if anything other than US- ASCII,
must always be explicitly specified in the Content-Type field.
No character set name other than those defined above may be used in
Internet mail without the publication of a formal specification and
its registration with IANA, or by private agreement, in which case
the character set name must begin with "X-".
Implementors are discouraged from defining new character sets unless
absolutely necessary.
The "charset" parameter has been defined primarily for the purpose of
textual data, and is described in this section for that reason.
However, it is conceivable that non-textual data might also wish to
specify a charset value for some purpose, in which case the same
syntax and values should be used.
In general, composition software should always use the "lowest common
denominator" character set possible. For example, if a body contains
only US-ASCII characters, it SHOULD be marked as being in the US-
ASCII character set, not ISO-8859-1, which, like all the ISO-8859
family of character sets, is a superset of US-ASCII. More generally,
if a widely-used character set is a subset of another character set,
and a body contains only characters in the widely-used subset, it
should be labelled as being in that subset. This will increase the
chances that the recipient will be able to view the resulting entity
correctly.
Freed & Borenstein Standards Track [Page 10]
RFC 2046 Media Types November 1996
4.1.3. Plain Subtype
The simplest and most important subtype of "text" is "plain". This
indicates plain text that does not contain any formatting commands or
directives. Plain text is intended to be displayed "as-is", that is,
no interpretation of embedded formatting commands, font attribute
specifications, processing instructions, interpretation directives,
or content markup should be necessary for proper display. The
default media type of "text/plain; charset=us-ascii" for Internet
mail describes existing Internet practice. That is, it is the type
of body defined by RFC 822.
No other "text" subtype is defined by this document.
4.1.4. Unrecognized Subtypes
Unrecognized subtypes of "text" should be treated as subtype "plain"
as long as the MIME implementation knows how to handle the charset.
Unrecognized subtypes which also specify an unrecognized charset
should be treated as "application/octet- stream".
4.2. Image Media Type
A media type of "image" indicates that the body contains an image.
The subtype names the specific image format. These names are not
case sensitive. An initial subtype is "jpeg" for the JPEG format
using JFIF encoding [JPEG].
The list of "image" subtypes given here is neither exclusive nor
exhaustive, and is expected to grow as more types are registered with
IANA, as described in RFC 2048.
Unrecognized subtypes of "image" should at a miniumum be treated as
"application/octet-stream". Implementations may optionally elect to
pass subtypes of "image" that they do not specifically recognize to a
secure and robust general-purpose image viewing application, if such
an application is available.
NOTE: Using of a generic-purpose image viewing application this way
inherits the security problems of the most dangerous type supported
by the application.
4.3. Audio Media Type
A media type of "audio" indicates that the body contains audio data.
Although there is not yet a consensus on an "ideal" audio format for
use with computers, there is a pressing need for a format capable of
providing interoperable behavior.
Freed & Borenstein Standards Track [Page 11]
RFC 2046 Media Types November 1996
The initial subtype of "basic" is specified to meet this requirement
by providing an absolutely minimal lowest common denominator audio
format. It is expected that richer formats for higher quality and/or
lower bandwidth audio will be defined by a later document.
The content of the "audio/basic" subtype is single channel audio
encoded using 8bit ISDN mu-law [PCM] at a sample rate of 8000 Hz.
Unrecognized subtypes of "audio" should at a miniumum be treated as
"application/octet-stream". Implementations may optionally elect to
pass subtypes of "audio" that they do not specifically recognize to a
robust general-purpose audio playing application, if such an
application is available.
4.4. Video Media Type
A media type of "video" indicates that the body contains a time-
varying-picture image, possibly with color and coordinated sound.
The term 'video' is used in its most generic sense, rather than with
reference to any particular technology or format, and is not meant to
preclude subtypes such as animated drawings encoded compactly. The
subtype "mpeg" refers to video coded according to the MPEG standard
[MPEG].
Note that although in general this document strongly discourages the
mixing of multiple media in a single body, it is recognized that many
so-called video formats include a representation for synchronized
audio, and this is explicitly permitted for subtypes of "video".
Unrecognized subtypes of "video" should at a minumum be treated as
"application/octet-stream". Implementations may optionally elect to
pass subtypes of "video" that they do not specifically recognize to a
robust general-purpose video display application, if such an
application is available.
4.5. Application Media Type
The "application" media type is to be used for discrete data which do
not fit in any of the other categories, and particularly for data to
be processed by some type of application program. This is
information which must be processed by an application before it is
viewable or usable by a user. Expected uses for the "application"
media type include file transfer, spreadsheets, data for mail-based
scheduling systems, and languages for "active" (computational)
material. (The latter, in particular, can pose security problems
which must be understood by implementors, and are considered in
detail in the discussion of the "application/PostScript" media type.)
Freed & Borenstein Standards Track [Page 12]
RFC 2046 Media Types November 1996
For example, a meeting scheduler might define a standard
representation for information about proposed meeting dates. An
intelligent user agent would use this information to conduct a dialog
with the user, and might then send additional material based on that
dialog. More generally, there have been several "active" messaging
languages developed in which programs in a suitably specialized
language are transported to a remote location and automatically run
in the recipient's environment.
Such applications may be defined as subtypes of the "application"
media type. This document defines two subtypes:
octet-stream, and PostScript.
The subtype of "application" will often be either the name or include
part of the name of the application for which the data are intended.
This does not mean, however, that any application program name may be
used freely as a subtype of "application".
4.5.1. Octet-Stream Subtype
The "octet-stream" subtype is used to indicate that a body contains
arbitrary binary data. The set of currently defined parameters is:
(1) TYPE -- the general type or category of binary data.
This is intended as information for the human recipient
rather than for any automatic processing.
(2) PADDING -- the number of bits of padding that were
appended to the bit-stream comprising the actual
contents to produce the enclosed 8bit byte-oriented
data. This is useful for enclosing a bit-stream in a
body when the total number of bits is not a multiple of
8.
Both of these parameters are optional.
An additional parameter, "CONVERSIONS", was defined in RFC 1341 but
has since been removed. RFC 1341 also defined the use of a "NAME"
parameter which gave a suggested file name to be used if the data
were to be written to a file. This has been deprecated in
anticipation of a separate Content-Disposition header field, to be
defined in a subsequent RFC.
The recommended action for an implementation that receives an
"application/octet-stream" entity is to simply offer to put the data
in a file, with any Content-Transfer-Encoding undone, or perhaps to
use it as input to a user-specified process.
Freed & Borenstein Standards Track [Page 13]
RFC 2046 Media Types November 1996
To reduce the danger of transmitting rogue programs, it is strongly
recommended that implementations NOT implement a path-search
mechanism whereby an arbitrary program named in the Content-Type
parameter (e.g., an "interpreter=" parameter) is found and executed
using the message body as input.
4.5.2. PostScript Subtype
A media type of "application/postscript" indicates a PostScript
program. Currently two variants of the PostScript language are
allowed; the original level 1 variant is described in [POSTSCRIPT]
and the more recent level 2 variant is described in [POSTSCRIPT2].
PostScript is a registered trademark of Adobe Systems, Inc. Use of
the MIME media type "application/postscript" implies recognition of
that trademark and all the rights it entails.
The PostScript language definition provides facilities for internal
labelling of the specific language features a given program uses.
This labelling, called the PostScript document structuring
conventions, or DSC, is very general and provides substantially more
information than just the language level. The use of document
structuring conventions, while not required, is strongly recommended
as an aid to interoperability. Documents which lack proper
structuring conventions cannot be tested to see whether or not they
will work in a given environment. As such, some systems may assume
the worst and refuse to process unstructured documents.
The execution of general-purpose PostScript interpreters entails
serious security risks, and implementors are discouraged from simply
sending PostScript bodies to "off- the-shelf" interpreters. While it
is usually safe to send PostScript to a printer, where the potential
for harm is greatly constrained by typical printer environments,
implementors should consider all of the following before they add
interactive display of PostScript bodies to their MIME readers.
The remainder of this section outlines some, though probably not all,
of the possible problems with the transport of PostScript entities.
(1) Dangerous operations in the PostScript language
include, but may not be limited to, the PostScript
operators "deletefile", "renamefile", "filenameforall",
and "file". "File" is only dangerous when applied to
something other than standard input or output.
Implementations may also define additional nonstandard
file operators; these may also pose a threat to
security. "Filenameforall", the wildcard file search
operator, may appear at first glance to be harmless.
Freed & Borenstein Standards Track [Page 14]
RFC 2046 Media Types November 1996
Note, however, that this operator has the potential to
reveal information about what files the recipient has
access to, and this information may itself be
sensitive. Message senders should avoid the use of
potentially dangerous file operators, since these
operators are quite likely to be unavailable in secure
PostScript implementations. Message receiving and
displaying software should either completely disable
all potentially dangerous file operators or take
special care not to delegate any special authority to
their operation. These operators should be viewed as
being done by an outside agency when interpreting
PostScript documents. Such disabling and/or checking
should be done completely outside of the reach of the
PostScript language itself; care should be taken to
insure that no method exists for re-enabling full-
function versions of these operators.
(2) The PostScript language provides facilities for exiting
the normal interpreter, or server, loop. Changes made
in this "outer" environment are customarily retained
across documents, and may in some cases be retained
semipermanently in nonvolatile memory. The operators
associated with exiting the interpreter loop have the
potential to interfere with subsequent document
processing. As such, their unrestrained use
constitutes a threat of service denial. PostScript
operators that exit the interpreter loop include, but
may not be limited to, the exitserver and startjob
operators. Message sending software should not
generate PostScript that depends on exiting the
interpreter loop to operate, since the ability to exit
will probably be unavailable in secure PostScript
implementations. Message receiving and displaying
software should completely disable the ability to make
retained changes to the PostScript environment by
eliminating or disabling the "startjob" and
"exitserver" operations. If these operations cannot be
eliminated or completely disabled the password
associated with them should at least be set to a hard-
to-guess value.
(3) PostScript provides operators for setting system-wide
and device-specific parameters. These parameter
settings may be retained across jobs and may
potentially pose a threat to the correct operation of
the interpreter. The PostScript operators that set
system and device parameters include, but may not be
Freed & Borenstein Standards Track [Page 15]
RFC 2046 Media Types November 1996
limited to, the "setsystemparams" and "setdevparams"
operators. Message sending software should not
generate PostScript that depends on the setting of
system or device parameters to operate correctly. The
ability to set these parameters will probably be
unavailable in secure PostScript implementations.
Message receiving and displaying software should
disable the ability to change system and device
parameters. If these operators cannot be completely
disabled the password associated with them should at
least be set to a hard-to-guess value.
(4) Some PostScript implementations provide nonstandard
facilities for the direct loading and execution of
machine code. Such facilities are quite obviously open
to substantial abuse. Message sending software should
not make use of such features. Besides being totally
hardware-specific, they are also likely to be
unavailable in secure implementations of PostScript.
Message receiving and displaying software should not
allow such operators to be used if they exist.
(5) PostScript is an extensible language, and many, if not
most, implementations of it provide a number of their
own extensions. This document does not deal with such
extensions explicitly since they constitute an unknown
factor. Message sending software should not make use
of nonstandard extensions; they are likely to be
missing from some implementations. Message receiving
and displaying software should make sure that any
nonstandard PostScript operators are secure and don't
present any kind of threat.
(6) It is possible to write PostScript that consumes huge
amounts of various system resources. It is also
possible to write PostScript programs that loop
indefinitely. Both types of programs have the
potential to cause damage if sent to unsuspecting
recipients. Message-sending software should avoid the
construction and dissemination of such programs, which
is antisocial. Message receiving and displaying
software should provide appropriate mechanisms to abort
processing after a reasonable amount of time has
elapsed. In addition, PostScript interpreters should be
limited to the consumption of only a reasonable amount
of any given system resource.
Freed & Borenstein Standards Track [Page 16]
RFC 2046 Media Types November 1996
(7) It is possible to include raw binary information inside
PostScript in various forms. This is not recommended
for use in Internet mail, both because it is not
supported by all PostScript interpreters and because it
significantly complicates the use of a MIME Content-
Transfer-Encoding. (Without such binary, PostScript
may typically be viewed as line-oriented data. The
treatment of CRLF sequences becomes extremely
problematic if binary and line-oriented data are mixed
in a single Postscript data stream.)
(8) Finally, bugs may exist in some PostScript interpreters
which could possibly be exploited to gain unauthorized
access to a recipient's system. Apart from noting this
possibility, there is no specific action to take to
prevent this, apart from the timely correction of such
bugs if any are found.
4.5.3. Other Application Subtypes
It is expected that many other subtypes of "application" will be
defined in the future. MIME implementations must at a minimum treat
any unrecognized subtypes as being equivalent to "application/octet-
stream".
5. Composite Media Type Values
The remaining two of the seven initial Content-Type values refer to
composite entities. Composite entities are handled using MIME
mechanisms -- a MIME processor typically handles the body directly.
5.1. Multipart Media Type
In the case of multipart entities, in which one or more different
sets of data are combined in a single body, a "multipart" media type
field must appear in the entity's header. The body must then contain
one or more body parts, each preceded by a boundary delimiter line,
and the last one followed by a closing boundary delimiter line.
After its boundary delimiter line, each body part then consists of a
header area, a blank line, and a body area. Thus a body part is
similar to an RFC 822 message in syntax, but different in meaning.
A body part is an entity and hence is NOT to be interpreted as
actually being an RFC 822 message. To begin with, NO header fields
are actually required in body parts. A body part that starts with a
blank line, therefore, is allowed and is a body part for which all
default values are to be assumed. In such a case, the absence of a
Content-Type header usually indicates that the corresponding body has
Freed & Borenstein Standards Track [Page 17]
RFC 2046 Media Types November 1996
a content-type of "text/plain; charset=US-ASCII".
The only header fields that have defined meaning for body parts are
those the names of which begin with "Content-". All other header
fields may be ignored in body parts. Although they should generally
be retained if at all possible, they may be discarded by gateways if
necessary. Such other fields are permitted to appear in body parts
but must not be depended on. "X-" fields may be created for
experimental or private purposes, with the recognition that the
information they contain may be lost at some gateways.
NOTE: The distinction between an RFC 822 message and a body part is
subtle, but important. A gateway between Internet and X.400 mail,
for example, must be able to tell the difference between a body part
that contains an image and a body part that contains an encapsulated
message, the body of which is a JPEG image. In order to represent
the latter, the body part must have "Content-Type: message/rfc822",
and its body (after the blank line) must be the encapsulated message,
with its own "Content-Type: image/jpeg" header field. The use of
similar syntax facilitates the conversion of messages to body parts,
and vice versa, but the distinction between the two must be
understood by implementors. (For the special case in which parts
actually are messages, a "digest" subtype is also defined.)
As stated previously, each body part is preceded by a boundary
delimiter line that contains the boundary delimiter. The boundary
delimiter MUST NOT appear inside any of the encapsulated parts, on a
line by itself or as the prefix of any line. This implies that it is
crucial that the composing agent be able to choose and specify a
unique boundary parameter value that does not contain the boundary
parameter value of an enclosing multipart as a prefix.
All present and future subtypes of the "multipart" type must use an
identical syntax. Subtypes may differ in their semantics, and may
impose additional restrictions on syntax, but must conform to the
required syntax for the "multipart" type. This requirement ensures
that all conformant user agents will at least be able to recognize
and separate the parts of any multipart entity, even those of an
unrecognized subtype.
As stated in the definition of the Content-Transfer-Encoding field
[RFC 2045], no encoding other than "7bit", "8bit", or "binary" is
permitted for entities of type "multipart". The "multipart" boundary
delimiters and header fields are always represented as 7bit US-ASCII
in any case (though the header fields may encode non-US-ASCII header
text as per RFC 2047) and data within the body parts can be encoded
on a part-by-part basis, with Content-Transfer-Encoding fields for
each appropriate body part.
Freed & Borenstein Standards Track [Page 18]
RFC 2046 Media Types November 1996
5.1.1. Common Syntax
This section defines a common syntax for subtypes of "multipart".
All subtypes of "multipart" must use this syntax. A simple example
of a multipart message also appears in this section. An example of a
more complex multipart message is given in RFC 2049.
The Content-Type field for multipart entities requires one parameter,
"boundary". The boundary delimiter line is then defined as a line
consisting entirely of two hyphen characters ("-", decimal value 45)
followed by the boundary parameter value from the Content-Type header
field, optional linear whitespace, and a terminating CRLF.
NOTE: The hyphens are for rough compatibility with the earlier RFC
934 method of message encapsulation, and for ease of searching for
the boundaries in some implementations. However, it should be noted
that multipart messages are NOT completely compatible with RFC 934
encapsulations; in particular, they do not obey RFC 934 quoting
conventions for embedded lines that begin with hyphens. This
mechanism was chosen over the RFC 934 mechanism because the latter
causes lines to grow with each level of quoting. The combination of
this growth with the fact that SMTP implementations sometimes wrap
long lines made the RFC 934 mechanism unsuitable for use in the event
that deeply-nested multipart structuring is ever desired.
WARNING TO IMPLEMENTORS: The grammar for parameters on the Content-
type field is such that it is often necessary to enclose the boundary
parameter values in quotes on the Content-type line. This is not
always necessary, but never hurts. Implementors should be sure to
study the grammar carefully in order to avoid producing invalid
Content-type fields. Thus, a typical "multipart" Content-Type header
field might look like this:
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
But the following is not valid:
Content-Type: multipart/mixed; boundary=gc0pJq0M:08jU534c0p
(because of the colon) and must instead be represented as
Content-Type: multipart/mixed; boundary="gc0pJq0M:08jU534c0p"
This Content-Type value indicates that the content consists of one or
more parts, each with a structure that is syntactically identical to
an RFC 822 message, except that the header area is allowed to be
completely empty, and that the parts are each preceded by the line
Freed & Borenstein Standards Track [Page 19]
RFC 2046 Media Types November 1996
--gc0pJq0M:08jU534c0p
The boundary delimiter MUST occur at the beginning of a line, i.e.,
following a CRLF, and the initial CRLF is considered to be attached
to the boundary delimiter line rather than part of the preceding
part. The boundary may be followed by zero or more characters of
linear whitespace. It is then terminated by either another CRLF and
the header fields for the next part, or by two CRLFs, in which case
there are no header fields for the next part. If no Content-Type
field is present it is assumed to be "message/rfc822" in a
"multipart/digest" and "text/plain" otherwise.
NOTE: The CRLF preceding the boundary delimiter line is conceptually
attached to the boundary so that it is possible to have a part that
does not end with a CRLF (line break). Body parts that must be
considered to end with line breaks, therefore, must have two CRLFs
preceding the boundary delimiter line, the first of which is part of
the preceding body part, and the second of which is part of the
encapsulation boundary.
Boundary delimiters must not appear within the encapsulated material,
and must be no longer than 70 characters, not counting the two
leading hyphens.
The boundary delimiter line following the last body part is a
distinguished delimiter that indicates that no further body parts
will follow. Such a delimiter line is identical to the previous
delimiter lines, with the addition of two more hyphens after the
boundary parameter value.
--gc0pJq0M:08jU534c0p--
NOTE TO IMPLEMENTORS: Boundary string comparisons must compare the
boundary value with the beginning of each candidate line. An exact
match of the entire candidate line is not required; it is sufficient
that the boundary appear in its entirety following the CRLF.
There appears to be room for additional information prior to the
first boundary delimiter line and following the final boundary
delimiter line. These areas should generally be left blank, and
implementations must ignore anything that appears before the first
boundary delimiter line or after the last one.
NOTE: These "preamble" and "epilogue" areas are generally not used
because of the lack of proper typing of these parts and the lack of
clear semantics for handling these areas at gateways, particularly
X.400 gateways. However, rather than leaving the preamble area
blank, many MIME implementations have found this to be a convenient
Freed & Borenstein Standards Track [Page 20]
RFC 2046 Media Types November 1996
place to insert an explanatory note for recipients who read the
message with pre-MIME software, since such notes will be ignored by
MIME-compliant software.
NOTE: Because boundary delimiters must not appear in the body parts
being encapsulated, a user agent must exercise care to choose a
unique boundary parameter value. The boundary parameter value in the
example above could have been the result of an algorithm designed to
produce boundary delimiters with a very low probability of already
existing in the data to be encapsulated without having to prescan the
data. Alternate algorithms might result in more "readable" boundary
delimiters for a recipient with an old user agent, but would require
more attention to the possibility that the boundary delimiter might
appear at the beginning of some line in the encapsulated part. The
simplest boundary delimiter line possible is something like "---",
with a closing boundary delimiter line of "-----".
As a very simple example, the following multipart message has two
parts, both of them plain text, one of them explicitly typed and one
of them implicitly typed:
From: Nathaniel Borenstein <nsb@bellcore.com>
To: Ned Freed <ned@innosoft.com>
Date: Sun, 21 Mar 1993 23:56:48 -0800 (PST)
Subject: Sample message
MIME-Version: 1.0
Content-type: multipart/mixed; boundary="simple boundary"
This is the preamble. It is to be ignored, though it
is a handy place for composition agents to include an
explanatory note to non-MIME conformant readers.
--simple boundary
This is implicitly typed plain US-ASCII text.
It does NOT end with a linebreak.
--simple boundary
Content-type: text/plain; charset=us-ascii
This is explicitly typed plain US-ASCII text.
It DOES end with a linebreak.
--simple boundary--
This is the epilogue. It is also to be ignored.
Freed & Borenstein Standards Track [Page 21]
RFC 2046 Media Types November 1996
The use of a media type of "multipart" in a body part within another
"multipart" entity is explicitly allowed. In such cases, for obvious
reasons, care must be taken to ensure that each nested "multipart"
entity uses a different boundary delimiter. See RFC 2049 for an
example of nested "multipart" entities.
The use of the "multipart" media type with only a single body part
may be useful in certain contexts, and is explicitly permitted.
NOTE: Experience has shown that a "multipart" media type with a
single body part is useful for sending non-text media types. It has
the advantage of providing the preamble as a place to include
decoding instructions. In addition, a number of SMTP gateways move
or remove the MIME headers, and a clever MIME decoder can take a good
guess at multipart boundaries even in the absence of the Content-Type
header and thereby successfully decode the message.
The only mandatory global parameter for the "multipart" media type is
the boundary parameter, which consists of 1 to 70 characters from a
set of characters known to be very robust through mail gateways, and
NOT ending with white space. (If a boundary delimiter line appears to
end with white space, the white space must be presumed to have been
added by a gateway, and must be deleted.) It is formally specified
by the following BNF:
boundary := 0*69<bchars> bcharsnospace
bchars := bcharsnospace / " "
bcharsnospace := DIGIT / ALPHA / "'" / "(" / ")" /
"+" / "_" / "," / "-" / "." /
"/" / ":" / "=" / "?"
Overall, the body of a "multipart" entity may be specified as
follows:
dash-boundary := "--" boundary
; boundary taken from the value of
; boundary parameter of the
; Content-Type field.
multipart-body := [preamble CRLF]
dash-boundary transport-padding CRLF
body-part *encapsulation
close-delimiter transport-padding
[CRLF epilogue]
Freed & Borenstein Standards Track [Page 22]
RFC 2046 Media Types November 1996
transport-padding := *LWSP-char
; Composers MUST NOT generate
; non-zero length transport
; padding, but receivers MUST
; be able to handle padding
; added by message transports.
encapsulation := delimiter transport-padding
CRLF body-part
delimiter := CRLF dash-boundary
close-delimiter := delimiter "--"
preamble := discard-text
epilogue := discard-text
discard-text := *(*text CRLF) *text
; May be ignored or discarded.
body-part := MIME-part-headers [CRLF *OCTET]
; Lines in a body-part must not start
; with the specified dash-boundary and
; the delimiter must not appear anywhere
; in the body part. Note that the
; semantics of a body-part differ from
; the semantics of a message, as
; described in the text.
OCTET := <any 0-255 octet value>
IMPORTANT: The free insertion of linear-white-space and RFC 822
comments between the elements shown in this BNF is NOT allowed since
this BNF does not specify a structured header field.
NOTE: In certain transport enclaves, RFC 822 restrictions such as
the one that limits bodies to printable US-ASCII characters may not
be in force. (That is, the transport domains may exist that resemble
standard Internet mail transport as specified in RFC 821 and assumed
by RFC 822, but without certain restrictions.) The relaxation of
these restrictions should be construed as locally extending the
definition of bodies, for example to include octets outside of the
US-ASCII range, as long as these extensions are supported by the
transport and adequately documented in the Content- Transfer-Encoding
header field. However, in no event are headers (either message
headers or body part headers) allowed to contain anything other than
US-ASCII characters.
Freed & Borenstein Standards Track [Page 23]
RFC 2046 Media Types November 1996
NOTE: Conspicuously missing from the "multipart" type is a notion of
structured, related body parts. It is recommended that those wishing
to provide more structured or integrated multipart messaging
facilities should define subtypes of multipart that are syntactically
identical but define relationships between the various parts. For
example, subtypes of multipart could be defined that include a
distinguished part which in turn is used to specify the relationships
between the other parts, probably referring to them by their
Content-ID field. Old implementations will not recognize the new
subtype if this approach is used, but will treat it as
multipart/mixed and will thus be able to show the user the parts that
are recognized.
5.1.2. Handling Nested Messages and Multiparts
The "message/rfc822" subtype defined in a subsequent section of this
document has no terminating condition other than running out of data.
Similarly, an improperly truncated "multipart" entity may not have
any terminating boundary marker, and can turn up operationally due to
mail system malfunctions.
It is essential that such entities be handled correctly when they are
themselves imbedded inside of another "multipart" structure. MIME
implementations are therefore required to recognize outer level
boundary markers at ANY level of inner nesting. It is not sufficient
to only check for the next expected marker or other terminating
condition.
5.1.3. Mixed Subtype
The "mixed" subtype of "multipart" is intended for use when the body
parts are independent and need to be bundled in a particular order.
Any "multipart" subtypes that an implementation does not recognize
must be treated as being of subtype "mixed".
5.1.4. Alternative Subtype
The "multipart/alternative" type is syntactically identical to
"multipart/mixed", but the semantics are different. In particular,
each of the body parts is an "alternative" version of the same
information.
Systems should recognize that the content of the various parts are
interchangeable. Systems should choose the "best" type based on the
local environment and references, in some cases even through user
interaction. As with "multipart/mixed", the order of body parts is
significant. In this case, the alternatives appear in an order of
increasing faithfulness to the original content. In general, the
Freed & Borenstein Standards Track [Page 24]
RFC 2046 Media Types November 1996
best choice is the LAST part of a type supported by the recipient
system's local environment.
"Multipart/alternative" may be used, for example, to send a message
in a fancy text format in such a way that it can easily be displayed
anywhere:
From: Nathaniel Borenstein <nsb@bellcore.com>
To: Ned Freed <ned@innosoft.com>
Date: Mon, 22 Mar 1993 09:41:09 -0800 (PST)
Subject: Formatted text mail
MIME-Version: 1.0
Content-Type: multipart/alternative; boundary=boundary42
--boundary42
Content-Type: text/plain; charset=us-ascii
... plain text version of message goes here ...
--boundary42
Content-Type: text/enriched
... RFC 1896 text/enriched version of same message
goes here ...
--boundary42
Content-Type: application/x-whatever
... fanciest version of same message goes here ...
--boundary42--
In this example, users whose mail systems understood the
"application/x-whatever" format would see only the fancy version,
while other users would see only the enriched or plain text version,
depending on the capabilities of their system.
In general, user agents that compose "multipart/alternative" entities
must place the body parts in increasing order of preference, that is,
with the preferred format last. For fancy text, the sending user
agent should put the plainest format first and the richest format
last. Receiving user agents should pick and display the last format
they are capable of displaying. In the case where one of the
alternatives is itself of type "multipart" and contains unrecognized
sub-parts, the user agent may choose either to show that alternative,
an earlier alternative, or both.
Freed & Borenstein Standards Track [Page 25]
RFC 2046 Media Types November 1996
NOTE: From an implementor's perspective, it might seem more sensible
to reverse this ordering, and have the plainest alternative last.
However, placing the plainest alternative first is the friendliest
possible option when "multipart/alternative" entities are viewed
using a non-MIME-conformant viewer. While this approach does impose
some burden on conformant MIME viewers, interoperability with older
mail readers was deemed to be more important in this case.
It may be the case that some user agents, if they can recognize more
than one of the formats, will prefer to offer the user the choice of
which format to view. This makes sense, for example, if a message
includes both a nicely- formatted image version and an easily-edited
text version. What is most critical, however, is that the user not
automatically be shown multiple versions of the same data. Either
the user should be shown the last recognized version or should be
given the choice.
THE SEMANTICS OF CONTENT-ID IN MULTIPART/ALTERNATIVE: Each part of a
"multipart/alternative" entity represents the same data, but the
mappings between the two are not necessarily without information
loss. For example, information is lost when translating ODA to
PostScript or plain text. It is recommended that each part should
have a different Content-ID value in the case where the information
content of the two parts is not identical. And when the information
content is identical -- for example, where several parts of type
"message/external-body" specify alternate ways to access the
identical data -- the same Content-ID field value should be used, to
optimize any caching mechanisms that might be present on the
recipient's end. However, the Content-ID values used by the parts
should NOT be the same Content-ID value that describes the
"multipart/alternative" as a whole, if there is any such Content-ID
field. That is, one Content-ID value will refer to the
"multipart/alternative" entity, while one or more other Content-ID
values will refer to the parts inside it.
5.1.5. Digest Subtype
This document defines a "digest" subtype of the "multipart" Content-
Type. This type is syntactically identical to "multipart/mixed", but
the semantics are different. In particular, in a digest, the default
Content-Type value for a body part is changed from "text/plain" to
"message/rfc822". This is done to allow a more readable digest
format that is largely compatible (except for the quoting convention)
with RFC 934.
Note: Though it is possible to specify a Content-Type value for a
body part in a digest which is other than "message/rfc822", such as a
"text/plain" part containing a description of the material in the
Freed & Borenstein Standards Track [Page 26]
RFC 2046 Media Types November 1996
digest, actually doing so is undesireble. The "multipart/digest"
Content-Type is intended to be used to send collections of messages.
If a "text/plain" part is needed, it should be included as a seperate
part of a "multipart/mixed" message.
A digest in this format might, then, look something like this:
From: Moderator-Address
To: Recipient-List
Date: Mon, 22 Mar 1994 13:34:51 +0000
Subject: Internet Digest, volume 42
MIME-Version: 1.0
Content-Type: multipart/mixed;
boundary="---- main boundary ----"
------ main boundary ----
...Introductory text or table of contents...
------ main boundary ----
Content-Type: multipart/digest;
boundary="---- next message ----"
------ next message ----
From: someone-else
Date: Fri, 26 Mar 1993 11:13:32 +0200
Subject: my opinion
...body goes here ...
------ next message ----
From: someone-else-again
Date: Fri, 26 Mar 1993 10:07:13 -0500
Subject: my different opinion
... another body goes here ...
------ next message ------
------ main boundary ------
5.1.6. Parallel Subtype
This document defines a "parallel" subtype of the "multipart"
Content-Type. This type is syntactically identical to
"multipart/mixed", but the semantics are different. In particular,
Freed & Borenstein Standards Track [Page 27]
RFC 2046 Media Types November 1996
in a parallel entity, the order of body parts is not significant.
A common presentation of this type is to display all of the parts
simultaneously on hardware and software that are capable of doing so.
However, composing agents should be aware that many mail readers will
lack this capability and will show the parts serially in any event.
5.1.7. Other Multipart Subtypes
Other "multipart" subtypes are expected in the future. MIME
implementations must in general treat unrecognized subtypes of
"multipart" as being equivalent to "multipart/mixed".
5.2. Message Media Type
It is frequently desirable, in sending mail, to encapsulate another
mail message. A special media type, "message", is defined to
facilitate this. In particular, the "rfc822" subtype of "message" is
used to encapsulate RFC 822 messages.
NOTE: It has been suggested that subtypes of "message" might be
defined for forwarded or rejected messages. However, forwarded and
rejected messages can be handled as multipart messages in which the
first part contains any control or descriptive information, and a
second part, of type "message/rfc822", is the forwarded or rejected
message. Composing rejection and forwarding messages in this manner
will preserve the type information on the original message and allow
it to be correctly presented to the recipient, and hence is strongly
encouraged.
Subtypes of "message" often impose restrictions on what encodings are
allowed. These restrictions are described in conjunction with each
specific subtype.
Mail gateways, relays, and other mail handling agents are commonly
known to alter the top-level header of an RFC 822 message. In
particular, they frequently add, remove, or reorder header fields.
These operations are explicitly forbidden for the encapsulated
headers embedded in the bodies of messages of type "message."
5.2.1. RFC822 Subtype
A media type of "message/rfc822" indicates that the body contains an
encapsulated message, with the syntax of an RFC 822 message.
However, unlike top-level RFC 822 messages, the restriction that each
"message/rfc822" body must include a "From", "Date", and at least one
destination header is removed and replaced with the requirement that
at least one of "From", "Subject", or "Date" must be present.
Freed & Borenstein Standards Track [Page 28]
RFC 2046 Media Types November 1996
It should be noted that, despite the use of the numbers "822", a
"message/rfc822" entity isn't restricted to material in strict
conformance to RFC822, nor are the semantics of "message/rfc822"
objects restricted to the semantics defined in RFC822. More
specifically, a "message/rfc822" message could well be a News article
or a MIME message.
No encoding other than "7bit", "8bit", or "binary" is permitted for
the body of a "message/rfc822" entity. The message header fields are
always US-ASCII in any case, and data within the body can still be
encoded, in which case the Content-Transfer-Encoding header field in
the encapsulated message will reflect this. Non-US-ASCII text in the
headers of an encapsulated message can be specified using the
mechanisms described in RFC 2047.
5.2.2. Partial Subtype
The "partial" subtype is defined to allow large entities to be
delivered as several separate pieces of mail and automatically
reassembled by a receiving user agent. (The concept is similar to IP
fragmentation and reassembly in the basic Internet Protocols.) This
mechanism can be used when intermediate transport agents limit the
size of individual messages that can be sent. The media type
"message/partial" thus indicates that the body contains a fragment of
a larger entity.
Because data of type "message" may never be encoded in base64 or
quoted-printable, a problem might arise if "message/partial" entities
are constructed in an environment that supports binary or 8bit
transport. The problem is that the binary data would be split into
multiple "message/partial" messages, each of them requiring binary
transport. If such messages were encountered at a gateway into a
7bit transport environment, there would be no way to properly encode
them for the 7bit world, aside from waiting for all of the fragments,
reassembling the inner message, and then encoding the reassembled
data in base64 or quoted-printable. Since it is possible that
different fragments might go through different gateways, even this is
not an acceptable solution. For this reason, it is specified that
entities of type "message/partial" must always have a content-
transfer-encoding of 7bit (the default). In particular, even in
environments that support binary or 8bit transport, the use of a
content- transfer-encoding of "8bit" or "binary" is explicitly
prohibited for MIME entities of type "message/partial". This in turn
implies that the inner message must not use "8bit" or "binary"
encoding.
Freed & Borenstein Standards Track [Page 29]
RFC 2046 Media Types November 1996
Because some message transfer agents may choose to automatically
fragment large messages, and because such agents may use very
different fragmentation thresholds, it is possible that the pieces of
a partial message, upon reassembly, may prove themselves to comprise
a partial message. This is explicitly permitted.
Three parameters must be specified in the Content-Type field of type
"message/partial": The first, "id", is a unique identifier, as close
to a world-unique identifier as possible, to be used to match the
fragments together. (In general, the identifier is essentially a
message-id; if placed in double quotes, it can be ANY message-id, in
accordance with the BNF for "parameter" given in RFC 2045.) The
second, "number", an integer, is the fragment number, which indicates
where this fragment fits into the sequence of fragments. The third,
"total", another integer, is the total number of fragments. This
third subfield is required on the final fragment, and is optional
(though encouraged) on the earlier fragments. Note also that these
parameters may be given in any order.
Thus, the second piece of a 3-piece message may have either of the
following header fields:
Content-Type: Message/Partial; number=2; total=3;
id="oc=jpbe0M2Yt4s@thumper.bellcore.com"
Content-Type: Message/Partial;
id="oc=jpbe0M2Yt4s@thumper.bellcore.com";
number=2
But the third piece MUST specify the total number of fragments:
Content-Type: Message/Partial; number=3; total=3;
id="oc=jpbe0M2Yt4s@thumper.bellcore.com"
Note that fragment numbering begins with 1, not 0.
When the fragments of an entity broken up in this manner are put
together, the result is always a complete MIME entity, which may have
its own Content-Type header field, and thus may contain any other
data type.
5.2.2.1. Message Fragmentation and Reassembly
The semantics of a reassembled partial message must be those of the
"inner" message, rather than of a message containing the inner
message. This makes it possible, for example, to send a large audio
message as several partial messages, and still have it appear to the
recipient as a simple audio message rather than as an encapsulated
Freed & Borenstein Standards Track [Page 30]
RFC 2046 Media Types November 1996
message containing an audio message. That is, the encapsulation of
the message is considered to be "transparent".
When generating and reassembling the pieces of a "message/partial"
message, the headers of the encapsulated message must be merged with
the headers of the enclosing entities. In this process the following
rules must be observed:
(1) Fragmentation agents must split messages at line
boundaries only. This restriction is imposed because
splits at points other than the ends of lines in turn
depends on message transports being able to preserve
the semantics of messages that don't end with a CRLF
sequence. Many transports are incapable of preserving
such semantics.
(2) All of the header fields from the initial enclosing
message, except those that start with "Content-" and
the specific header fields "Subject", "Message-ID",
"Encrypted", and "MIME-Version", must be copied, in
order, to the new message.
(3) The header fields in the enclosed message which start
with "Content-", plus the "Subject", "Message-ID",
"Encrypted", and "MIME-Version" fields, must be
appended, in order, to the header fields of the new
message. Any header fields in the enclosed message
which do not start with "Content-" (except for the
"Subject", "Message-ID", "Encrypted", and "MIME-
Version" fields) will be ignored and dropped.
(4) All of the header fields from the second and any
subsequent enclosing messages are discarded by the
reassembly process.
5.2.2.2. Fragmentation and Reassembly Example
If an audio message is broken into two pieces, the first piece might
look something like this:
X-Weird-Header-1: Foo
From: Bill@host.com
To: joe@otherhost.com
Date: Fri, 26 Mar 1993 12:59:38 -0500 (EST)
Subject: Audio mail (part 1 of 2)
Message-ID: <id1@host.com>
MIME-Version: 1.0
Content-type: message/partial; id="ABC@host.com";
Freed & Borenstein Standards Track [Page 31]
RFC 2046 Media Types November 1996
number=1; total=2
X-Weird-Header-1: Bar
X-Weird-Header-2: Hello
Message-ID: <anotherid@foo.com>
Subject: Audio mail
MIME-Version: 1.0
Content-type: audio/basic
Content-transfer-encoding: base64
... first half of encoded audio data goes here ...
and the second half might look something like this:
From: Bill@host.com
To: joe@otherhost.com
Date: Fri, 26 Mar 1993 12:59:38 -0500 (EST)
Subject: Audio mail (part 2 of 2)
MIME-Version: 1.0
Message-ID: <id2@host.com>
Content-type: message/partial;
id="ABC@host.com"; number=2; total=2
... second half of encoded audio data goes here ...
Then, when the fragmented message is reassembled, the resulting
message to be displayed to the user should look something like this:
X-Weird-Header-1: Foo
From: Bill@host.com
To: joe@otherhost.com
Date: Fri, 26 Mar 1993 12:59:38 -0500 (EST)
Subject: Audio mail
Message-ID: <anotherid@foo.com>
MIME-Version: 1.0
Content-type: audio/basic
Content-transfer-encoding: base64
... first half of encoded audio data goes here ...
... second half of encoded audio data goes here ...
The inclusion of a "References" field in the headers of the second
and subsequent pieces of a fragmented message that references the
Message-Id on the previous piece may be of benefit to mail readers
that understand and track references. However, the generation of
such "References" fields is entirely optional.
Freed & Borenstein Standards Track [Page 32]
RFC 2046 Media Types November 1996
Finally, it should be noted that the "Encrypted" header field has
been made obsolete by Privacy Enhanced Messaging (PEM) [RFC-1421,
RFC-1422, RFC-1423, RFC-1424], but the rules above are nevertheless
believed to describe the correct way to treat it if it is encountered
in the context of conversion to and from "message/partial" fragments.
5.2.3. External-Body Subtype
The external-body subtype indicates that the actual body data are not
included, but merely referenced. In this case, the parameters
describe a mechanism for accessing the external data.
When a MIME entity is of type "message/external-body", it consists of
a header, two consecutive CRLFs, and the message header for the
encapsulated message. If another pair of consecutive CRLFs appears,
this of course ends the message header for the encapsulated message.
However, since the encapsulated message's body is itself external, it
does NOT appear in the area that follows. For example, consider the
following message:
Content-type: message/external-body;
access-type=local-file;
name="/u/nsb/Me.jpeg"
Content-type: image/jpeg
Content-ID: <id42@guppylake.bellcore.com>
Content-Transfer-Encoding: binary
THIS IS NOT REALLY THE BODY!
The area at the end, which might be called the "phantom body", is
ignored for most external-body messages. However, it may be used to
contain auxiliary information for some such messages, as indeed it is
when the access-type is "mail- server". The only access-type defined
in this document that uses the phantom body is "mail-server", but
other access-types may be defined in the future in other
specifications that use this area.
The encapsulated headers in ALL "message/external-body" entities MUST
include a Content-ID header field to give a unique identifier by
which to reference the data. This identifier may be used for caching
mechanisms, and for recognizing the receipt of the data when the
access-type is "mail-server".
Note that, as specified here, the tokens that describe external-body
data, such as file names and mail server commands, are required to be
in the US-ASCII character set.
Freed & Borenstein Standards Track [Page 33]
RFC 2046 Media Types November 1996
If this proves problematic in practice, a new mechanism may be
required as a future extension to MIME, either as newly defined
access-types for "message/external-body" or by some other mechanism.
As with "message/partial", MIME entities of type "message/external-
body" MUST have a content-transfer-encoding of 7bit (the default).
In particular, even in environments that support binary or 8bit
transport, the use of a content- transfer-encoding of "8bit" or
"binary" is explicitly prohibited for entities of type
"message/external-body".
5.2.3.1. General External-Body Parameters
The parameters that may be used with any "message/external- body"
are:
(1) ACCESS-TYPE -- A word indicating the supported access
mechanism by which the file or data may be obtained.
This word is not case sensitive. Values include, but
are not limited to, "FTP", "ANON-FTP", "TFTP", "LOCAL-
FILE", and "MAIL-SERVER". Future values, except for
experimental values beginning with "X-", must be
registered with IANA, as described in RFC 2048.
This parameter is unconditionally mandatory and MUST be
present on EVERY "message/external-body".
(2) EXPIRATION -- The date (in the RFC 822 "date-time"
syntax, as extended by RFC 1123 to permit 4 digits in
the year field) after which the existence of the
external data is not guaranteed. This parameter may be
used with ANY access-type and is ALWAYS optional.
(3) SIZE -- The size (in octets) of the data. The intent
of this parameter is to help the recipient decide
whether or not to expend the necessary resources to
retrieve the external data. Note that this describes
the size of the data in its canonical form, that is,
before any Content-Transfer-Encoding has been applied
or after the data have been decoded. This parameter
may be used with ANY access-type and is ALWAYS
optional.
(4) PERMISSION -- A case-insensitive field that indicates
whether or not it is expected that clients might also
attempt to overwrite the data. By default, or if
permission is "read", the assumption is that they are
not, and that if the data is retrieved once, it is
never needed again. If PERMISSION is "read-write",
Freed & Borenstein Standards Track [Page 34]
RFC 2046 Media Types November 1996
this assumption is invalid, and any local copy must be
considered no more than a cache. "Read" and "Read-
write" are the only defined values of permission. This
parameter may be used with ANY access-type and is
ALWAYS optional.
The precise semantics of the access-types defined here are described
in the sections that follow.
5.2.3.2. The 'ftp' and 'tftp' Access-Types
An access-type of FTP or TFTP indicates that the message body is
accessible as a file using the FTP [RFC-959] or TFTP [RFC- 783]
protocols, respectively. For these access-types, the following
additional parameters are mandatory:
(1) NAME -- The name of the file that contains the actual
body data.
(2) SITE -- A machine from which the file may be obtained,
using the given protocol. This must be a fully
qualified domain name, not a nickname.
(3) Before any data are retrieved, using FTP, the user will
generally need to be asked to provide a login id and a
password for the machine named by the site parameter.
For security reasons, such an id and password are not
specified as content-type parameters, but must be
obtained from the user.
In addition, the following parameters are optional:
(1) DIRECTORY -- A directory from which the data named by
NAME should be retrieved.
(2) MODE -- A case-insensitive string indicating the mode
to be used when retrieving the information. The valid
values for access-type "TFTP" are "NETASCII", "OCTET",
and "MAIL", as specified by the TFTP protocol [RFC-
783]. The valid values for access-type "FTP" are
"ASCII", "EBCDIC", "IMAGE", and "LOCALn" where "n" is a
decimal integer, typically 8. These correspond to the
representation types "A" "E" "I" and "L n" as specified
by the FTP protocol [RFC-959]. Note that "BINARY" and
"TENEX" are not valid values for MODE and that "OCTET"
or "IMAGE" or "LOCAL8" should be used instead. IF MODE
is not specified, the default value is "NETASCII" for
TFTP and "ASCII" otherwise.
Freed & Borenstein Standards Track [Page 35]
RFC 2046 Media Types November 1996
5.2.3.3. The 'anon-ftp' Access-Type
The "anon-ftp" access-type is identical to the "ftp" access type,
except that the user need not be asked to provide a name and password
for the specified site. Instead, the ftp protocol will be used with
login "anonymous" and a password that corresponds to the user's mail
address.
5.2.3.4. The 'local-file' Access-Type
An access-type of "local-file" indicates that the actual body is
accessible as a file on the local machine. Two additional parameters
are defined for this access type:
(1) NAME -- The name of the file that contains the actual
body data. This parameter is mandatory for the
"local-file" access-type.
(2) SITE -- A domain specifier for a machine or set of
machines that are known to have access to the data
file. This optional parameter is used to describe the
locality of reference for the data, that is, the site
or sites at which the file is expected to be visible.
Asterisks may be used for wildcard matching to a part
of a domain name, such as "*.bellcore.com", to indicate
a set of machines on which the data should be directly
visible, while a single asterisk may be used to
indicate a file that is expected to be universally
available, e.g., via a global file system.
5.2.3.5. The 'mail-server' Access-Type
The "mail-server" access-type indicates that the actual body is
available from a mail server. Two additional parameters are defined
for this access-type:
(1) SERVER -- The addr-spec of the mail server from which
the actual body data can be obtained. This parameter
is mandatory for the "mail-server" access-type.
(2) SUBJECT -- The subject that is to be used in the mail
that is sent to obtain the data. Note that keying mail
servers on Subject lines is NOT recommended, but such
mail servers are known to exist. This is an optional
parameter.
Freed & Borenstein Standards Track [Page 36]
RFC 2046 Media Types November 1996
Because mail servers accept a variety of syntaxes, some of which is
multiline, the full command to be sent to a mail server is not
included as a parameter in the content-type header field. Instead,
it is provided as the "phantom body" when the media type is
"message/external-body" and the access-type is mail-server.
Note that MIME does not define a mail server syntax. Rather, it
allows the inclusion of arbitrary mail server commands in the phantom
body. Implementations must include the phantom body in the body of
the message it sends to the mail server address to retrieve the
relevant data.
Unlike other access-types, mail-server access is asynchronous and
will happen at an unpredictable time in the future. For this reason,
it is important that there be a mechanism by which the returned data
can be matched up with the original "message/external-body" entity.
MIME mail servers must use the same Content-ID field on the returned
message that was used in the original "message/external-body"
entities, to facilitate such matching.
5.2.3.6. External-Body Security Issues
"Message/external-body" entities give rise to two important security
issues:
(1) Accessing data via a "message/external-body" reference
effectively results in the message recipient performing
an operation that was specified by the message
originator. It is therefore possible for the message
originator to trick a recipient into doing something
they would not have done otherwise. For example, an
originator could specify a action that attempts
retrieval of material that the recipient is not
authorized to obtain, causing the recipient to
unwittingly violate some security policy. For this
reason, user agents capable of resolving external
references must always take steps to describe the
action they are to take to the recipient and ask for
explicit permisssion prior to performing it.
The 'mail-server' access-type is particularly
vulnerable, in that it causes the recipient to send a
new message whose contents are specified by the
original message's originator. Given the potential for
abuse, any such request messages that are constructed
should contain a clear indication that they were
generated automatically (e.g. in a Comments: header
field) in an attempt to resolve a MIME
Freed & Borenstein Standards Track [Page 37]
RFC 2046 Media Types November 1996
"message/external-body" reference.
(2) MIME will sometimes be used in environments that
provide some guarantee of message integrity and
authenticity. If present, such guarantees may apply
only to the actual direct content of messages -- they
may or may not apply to data accessed through MIME's
"message/external-body" mechanism. In particular, it
may be possible to subvert certain access mechanisms
even when the messaging system itself is secure.
It should be noted that this problem exists either with
or without the availabilty of MIME mechanisms. A
casual reference to an FTP site containing a document
in the text of a secure message brings up similar
issues -- the only difference is that MIME provides for
automatic retrieval of such material, and users may
place unwarranted trust is such automatic retrieval
mechanisms.
5.2.3.7. Examples and Further Explanations
When the external-body mechanism is used in conjunction with the
"multipart/alternative" media type it extends the functionality of
"multipart/alternative" to include the case where the same entity is
provided in the same format but via different accces mechanisms.
When this is done the originator of the message must order the parts
first in terms of preferred formats and then by preferred access
mechanisms. The recipient's viewer should then evaluate the list
both in terms of format and access mechanisms.
With the emerging possibility of very wide-area file systems, it
becomes very hard to know in advance the set of machines where a file
will and will not be accessible directly from the file system.
Therefore it may make sense to provide both a file name, to be tried
directly, and the name of one or more sites from which the file is
known to be accessible. An implementation can try to retrieve remote
files using FTP or any other protocol, using anonymous file retrieval
or prompting the user for the necessary name and password. If an
external body is accessible via multiple mechanisms, the sender may
include multiple entities of type "message/external-body" within the
body parts of an enclosing "multipart/alternative" entity.
However, the external-body mechanism is not intended to be limited to
file retrieval, as shown by the mail-server access-type. Beyond
this, one can imagine, for example, using a video server for external
references to video clips.
Freed & Borenstein Standards Track [Page 38]
RFC 2046 Media Types November 1996
The embedded message header fields which appear in the body of the
"message/external-body" data must be used to declare the media type
of the external body if it is anything other than plain US-ASCII
text, since the external body does not have a header section to
declare its type. Similarly, any Content-transfer-encoding other
than "7bit" must also be declared here. Thus a complete
"message/external-body" message, referring to an object in PostScript
format, might look like this:
From: Whomever
To: Someone
Date: Whenever
Subject: whatever
MIME-Version: 1.0
Message-ID: <id1@host.com>
Content-Type: multipart/alternative; boundary=42
Content-ID: <id001@guppylake.bellcore.com>
--42
Content-Type: message/external-body; name="BodyFormats.ps";
site="thumper.bellcore.com"; mode="image";
access-type=ANON-FTP; directory="pub";
expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"
Content-type: application/postscript
Content-ID: <id42@guppylake.bellcore.com>
--42
Content-Type: message/external-body; access-type=local-file;
name="/u/nsb/writing/rfcs/RFC-MIME.ps";
site="thumper.bellcore.com";
expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"
Content-type: application/postscript
Content-ID: <id42@guppylake.bellcore.com>
--42
Content-Type: message/external-body;
access-type=mail-server
server="listserv@bogus.bitnet";
expiration="Fri, 14 Jun 1991 19:13:14 -0400 (EDT)"
Content-type: application/postscript
Content-ID: <id42@guppylake.bellcore.com>
get RFC-MIME.DOC
--42--
Freed & Borenstein Standards Track [Page 39]
RFC 2046 Media Types November 1996
Note that in the above examples, the default Content-transfer-
encoding of "7bit" is assumed for the external postscript data.
Like the "message/partial" type, the "message/external-body" media
type is intended to be transparent, that is, to convey the data type
in the external body rather than to convey a message with a body of
that type. Thus the headers on the outer and inner parts must be
merged using the same rules as for "message/partial". In particular,
this means that the Content-type and Subject fields are overridden,
but the From field is preserved.
Note that since the external bodies are not transported along with
the external body reference, they need not conform to transport
limitations that apply to the reference itself. In particular,
Internet mail transports may impose 7bit and line length limits, but
these do not automatically apply to binary external body references.
Thus a Content-Transfer-Encoding is not generally necessary, though
it is permitted.
Note that the body of a message of type "message/external-body" is
governed by the basic syntax for an RFC 822 message. In particular,
anything before the first consecutive pair of CRLFs is header
information, while anything after it is body information, which is
ignored for most access-types.
5.2.4. Other Message Subtypes
MIME implementations must in general treat unrecognized subtypes of
"message" as being equivalent to "application/octet-stream".
Future subtypes of "message" intended for use with email should be
restricted to "7bit" encoding. A type other than "message" should be
used if restriction to "7bit" is not possible.
6. Experimental Media Type Values
A media type value beginning with the characters "X-" is a private
value, to be used by consenting systems by mutual agreement. Any
format without a rigorous and public definition must be named with an
"X-" prefix, and publicly specified values shall never begin with
"X-". (Older versions of the widely used Andrew system use the "X-
BE2" name, so new systems should probably choose a different name.)
In general, the use of "X-" top-level types is strongly discouraged.
Implementors should invent subtypes of the existing types whenever
possible. In many cases, a subtype of "application" will be more
appropriate than a new top-level type.
Freed & Borenstein Standards Track [Page 40]
RFC 2046 Media Types November 1996
7. Summary
The five discrete media types provide provide a standardized
mechanism for tagging entities as "audio", "image", or several other
kinds of data. The composite "multipart" and "message" media types
allow mixing and hierarchical structuring of entities of different
types in a single message. A distinguished parameter syntax allows
further specification of data format details, particularly the
specification of alternate character sets. Additional optional
header fields provide mechanisms for certain extensions deemed
desirable by many implementors. Finally, a number of useful media
types are defined for general use by consenting user agents, notably
"message/partial" and "message/external-body".
9. Security Considerations
Security issues are discussed in the context of the
"application/postscript" type, the "message/external-body" type, and
in RFC 2048. Implementors should pay special attention to the
security implications of any media types that can cause the remote
execution of any actions in the recipient's environment. In such
cases, the discussion of the "application/postscript" type may serve
as a model for considering other media types with remote execution
capabilities.
Freed & Borenstein Standards Track [Page 41]
RFC 2046 Media Types November 1996
9. Authors' Addresses
For more information, the authors of this document are best contacted
via Internet mail:
Ned Freed
Innosoft International, Inc.
1050 East Garvey Avenue South
West Covina, CA 91790
USA
Phone: +1 818 919 3600
Fax: +1 818 919 3614
EMail: ned@innosoft.com
Nathaniel S. Borenstein
First Virtual Holdings
25 Washington Avenue
Morristown, NJ 07960
USA
Phone: +1 201 540 8967
Fax: +1 201 993 3032
EMail: nsb@nsb.fv.com
MIME is a result of the work of the Internet Engineering Task Force
Working Group on RFC 822 Extensions. The chairman of that group,
Greg Vaudreuil, may be reached at:
Gregory M. Vaudreuil
Octel Network Services
17080 Dallas Parkway
Dallas, TX 75248-1905
USA
EMail: Greg.Vaudreuil@Octel.Com
Freed & Borenstein Standards Track [Page 42]
RFC 2046 Media Types November 1996
Appendix A -- Collected Grammar
This appendix contains the complete BNF grammar for all the syntax
specified by this document.
By itself, however, this grammar is incomplete. It refers by name to
several syntax rules that are defined by RFC 822. Rather than
reproduce those definitions here, and risk unintentional differences
between the two, this document simply refers the reader to RFC 822
for the remaining definitions. Wherever a term is undefined, it
refers to the RFC 822 definition.
boundary := 0*69<bchars> bcharsnospace
bchars := bcharsnospace / " "
bcharsnospace := DIGIT / ALPHA / "'" / "(" / ")" /
"+" / "_" / "," / "-" / "." /
"/" / ":" / "=" / "?"
body-part := <"message" as defined in RFC 822, with all
header fields optional, not starting with the
specified dash-boundary, and with the
delimiter not occurring anywhere in the
body part. Note that the semantics of a
part differ from the semantics of a message,
as described in the text.>
close-delimiter := delimiter "--"
dash-boundary := "--" boundary
; boundary taken from the value of
; boundary parameter of the
; Content-Type field.
delimiter := CRLF dash-boundary
discard-text := *(*text CRLF)
; May be ignored or discarded.
encapsulation := delimiter transport-padding
CRLF body-part
epilogue := discard-text
multipart-body := [preamble CRLF]
dash-boundary transport-padding CRLF
body-part *encapsulation
Freed & Borenstein Standards Track [Page 43]
RFC 2046 Media Types November 1996
close-delimiter transport-padding
[CRLF epilogue]
preamble := discard-text
transport-padding := *LWSP-char
; Composers MUST NOT generate
; non-zero length transport
; padding, but receivers MUST
; be able to handle padding
; added by message transports.
Freed & Borenstein Standards Track [Page 44]