libmu_sieve.texi
21.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
@c This is part of the GNU Mailutils manual.
@c Copyright (C) 1999-2004, 2006-2007, 2009-2012, 2014-2017 Free
@c Software Foundation, Inc.
@c See file mailutils.texi for copying conditions.
@comment *******************************************************************
@code{Libmu_sieve} is GNU implementation of the mail filtering
language Sieve. The library is built around a @dfn{Sieve Machine} --- an
abstract computer constructed specially to handle mail filtering tasks.
This computer has two registers: program counter and numeric accumulator;
a runtime stack of unlimited depth and the code segment. A set of
functions is provided for creating and destroying instances of Sieve
Machine, manipulating its internal data, compiling and executing a
sieve program.
The following is a typical scenario of using @code{libmu_sieve}:
@enumerate
@item Application program creates the instance of sieve machine.
@item Then @code{mu_sieve_compile} function is called to translate
the Sieve source into an equivalent program executable by the
Machine
@item A mailbox is opened and associated with the Machine
@item The Machine executes the program over the mailbox
@item When the execution of the program is finished, all messages upon which
an action was executed other than @code{keep} are marked with the delete
flag. Thus, running @code{mailbox_expunge} upon the mailbox finishes
the job, leaving in the mailbox only those messages that were preserved
by the filter.
@item Finally, the instance of Sieve Machine is destroyed and the
resources allocated for it are reclaimed.
@end enumerate
The following sections describe in detail the functions from the
Sieve Library.
@menu
* Sieve Data Types::
* Manipulating the Sieve Machine::
* Logging and Diagnostic Functions::
* String Accessors::
* Argument Accessors::
* Symbol Space Functions::
* Memory Allocation::
* Compiling and Executing the Script::
* Writing Loadable Commands::
@end menu
@node Sieve Data Types
@subsection Sieve Data Types
@deftp {Data Type} mu_sieve_machine_t
This is an opaque data type representing a pointer to an instance of
sieve machine. The @code{mu_sieve_machine_t} keeps all information necessary
for compiling and executing the script.
It is created by @code{mu_sieve_machine_create()} and destroyed by
@code{mu_sieve_machine_destroy()}. The functions for manipulating this data
type are described in @ref{Manipulating the Sieve Machine}.
@end deftp
@deftp {Data Type} mu_sieve_data_type
This enumeration keeps the possible types of sieve data. These are:
@table @code
@item SVT_VOID
No datatype.
@item SVT_NUMBER
Numeric type.
@item SVT_STRING
Character string.
@item SVT_STRING_LIST
A list of strings.
@item SVT_TAG
A sieve tag. This data type is available only during the
compilation. On runtime, all tags are converted to one of the above
types, depending on their arguments. Tags without arguments are
converted to SVT_VOID.
@end table
@end deftp
@deftp {Data Type} mu_sieve_value_t
The @code{mu_sieve_value_t} keeps an instance of sieve data. It is defined
as follows:
@smallexample
@group
typedef struct
@{
union mu_sieve_value_storage
@{
char *string;
size_t number;
struct mu_sieve_slice list;
@};
typedef struct
@{
mu_sieve_data_type type;
char *tag;
union mu_sieve_value_storage v;
@} mu_sieve_value_t;
@}
mu_sieve_value_t;
@end group
@end smallexample
Depending on the value of @code{type} member, following members of the
union @code{v} keep the actual value:
@table @code
@item SVT_VOID
No associated value.
@item SVT_NUMBER
The numeric value is kept in the @code{number} member.
@item SVT_STRING_LIST
@itemx SVT_STRING
The list is identified by the @code{list} member of the union
@code{mu_sieve_value_storage}. This member is defined as follows:
@example
struct mu_sieve_slice
@{
size_t first; /* Index of the first string */
size_t count; /* Number of strings */
@};
@end example
The @code{first} member identifies the first string in the list.
The @code{count} member gives the number of strings in the list. If
the data type is @code{SVT_STRING}, @code{count} is guaranteed to be
1.
The string itself can be accessed using the @code{mu_sieve_string}
function (@pxref{String Accessors}). For example, the following code
fragment iterates over all strings in the list:
@example
size_t i;
mu_sieve_value_t *val;
for (i = 0; i < val->v.list.count; i++)
@{
char *string;
string = mu_sieve_string (mach, &val->v.list, i);
...
@}
@end example
@item SVT_TAG
Never appears.
@end table
@end deftp
@deftp {Data Type} mu_sieve_tag_def_t
This structure represents a definition of a tagged (optional) argument
to a sieve action or test. It is defined as follows:
@smallexample
@group
typedef struct
@{
char *name; /* Tag name */
mu_sieve_data_type argtype; /* Type of tag argument. */
@}
mu_sieve_tag_def_t;
@end group
@end smallexample
The @code{name} member points to the tag's name @emph{without leading
colon}. The @code{argtype} is set to @code{SVT_VOID} if the tag does
not take argument, or to the type of the argument otherwise.
@end deftp
@deftp {Data Type} mu_sieve_handler_t
This is a pointer to function handler for a sieve action or test.
It is defined as follows:
@smallexample
typedef int (*mu_sieve_handler_t) (mu_sieve_machine_t @var{mach});
@end smallexample
The @var{mach} argument is the machine being worked upon. The rest of
data can be obtained from it.
@deftp {Data Type} mu_sieve_action_log_t
A pointer to the application-specific logging function:
@smallexample
typedef void (*mu_sieve_action_log_t) (mu_sieve_machine_t @var{mach},
const char *@var{action},
const char *@var{fmt},
va_list @var{ap});
@end smallexample
@table @var
@item nach
The sieve machine.
@item action
The name of the action.
@item fmt
A @code{printf}-style format string.
@item ap
Arguments for the format.
@end table
@end deftp
@deftp {Data Type} mu_sieve_relcmp_t
@deftpx {Data Type} mu_sieve_relcmpn_t
@smallexample
typedef int (*mu_sieve_relcmp_t) (int, int);
typedef int (*mu_sieve_relcmpn_t) (size_t, size_t);
@end smallexample
@end deftp
@deftp {Data Type} mu_sieve_comparator_t
@smallexample
typedef int (*mu_sieve_comparator_t) (const char *, const char *);
@end smallexample
A pointer to the comparator handler function. The function compares
its two operands and returns 1 if they are equal, and 0 otherwise.
@emph{Notice}, that the sense of the return value is inverted
in comparison with most standard libc functions like @code{stcmp()}, etc.
@end deftp
@deftp {Data Type} mu_sieve_retrieve_t
@smallexample
typedef int (*mu_sieve_retrieve_t) (void *item, void *data, int idx,
char **pval);
@end smallexample
A pointer to generic retriever function. See description of
@code{mu_sieve_vlist_compare()} for details of its usage.
@end deftp
@deftp {Data Type} mu_sieve_destructor_t
@smallexample
typedef void (*mu_sieve_destructor_t) (void *data);
@end smallexample
A pointer to destructor function. The function frees any resources
associated with @code{data}. See the description of
@code{mu_sieve_machine_add_destructor()} for more information.
@end deftp
@deftp {Data Type} mu_sieve_tag_checker_t
@smallexample
typedef int (*mu_sieve_tag_checker_t) (const char *@var{name})
@end smallexample
A pointer to tag checker function. The purpose of the function is to
perform compilation-time consistency test on tags.
The function is allowed to make any changes in @var{tags} and
@var{args}. It should return 0 if the syntax is correct and non-zero
otherwise. It is responsible for issuing the diagnostics in the latter
case. [FIXME: describe how to do that]
@end deftp
@node Manipulating the Sieve Machine
@subsection Manipulating the Sieve Machine
This subsection describes functions used to create an instance of the
sieve machine, read or alter its internal fields and destroy it.
@deftypefun int mu_sieve_machine_create (mu_sieve_machine_t *@var{mach})
The @code{mu_sieve_machine_create()} function creates an instance of a sieve
machine. A pointer to the instance itself is returned in the argument
@var{mach}. The function returns 0 on success, and a non-zero error
code otherwise.
@end deftypefun
@deftypefun void mu_sieve_machine_destroy (mu_sieve_machine_t *@var{pmach})
This function destroys the instance of sieve machine pointed to by
@var{mach} parameter. After execution of @code{mu_sieve_machine_destroy()}
@var{pmach} contains @code{NULL}. The destructors registered with
@code{mu_sieve_machine_add_destructor()} are executed in @sc{lifo}
order.
@end deftypefun
@deftypefun int mu_sieve_machine_add_destructor (mu_sieve_machine_t @var{mach}, mu_sieve_destructor_t @var{destr}, void *@var{ptr});
This function registers a destructor function @var{dest}. The purpose
of the destructor is to free any resources associated with the item
@var{ptr}. The destructor function takes a single argument --- a
pointer to the data being destroyed. All registered destructors are
called in reverse order upon execution of
@code{mu_sieve_machine_destroy()}.
@deftypefun {void *} mu_sieve_get_data (mu_sieve_machine_t @var{mach})
This function returns the application-specific data associated with
the instance of sieve machine. See @code{mu_sieve_machine_create()}.
@end deftypefun
@deftypefun mu_message_t mu_sieve_get_message (mu_sieve_machine_t @var{mach})
This function returns the current message.
@end deftypefun
@deftypefun size_t mu_sieve_get_message_num (mu_sieve_machine_t @var{mach})
This function returns the current message number in the mailbox.
If there are no mailbox, i.e. the execution of the sieve code is started
with @code{mu_sieve_message}, this function returns 1.
@end deftypefun
@deftypefun int mu_sieve_get_debug_level (mu_sieve_machine_t @var{mach})
Returns the debug level set for this instance of sieve machine.
@end deftypefun
@deftypefun mu_mailer_t mu_sieve_get_mailer (mu_sieve_machine_t @var{mach})
Returns the mailer.
@end deftypefun
@deftypefun int mu_sieve_get_locus (mu_sieve_machine_t @var{mach}, @
struct mu_locus *@var{locus})
Returns the locus in the Sieve source file corresponding to the code pointer
where the Sieve machine currently is.
@end deftypefun
@deftypefun {char *} mu_sieve_get_daemon_email (mu_sieve_machine_t @var{mach})
This function returns the @dfn{daemon email} associated with this
instance of sieve machine. The daemon email is an email address used in
envelope from addresses of automatic reply messages. By default its local
part is @samp{<MAILER-DAEMON>} and the domain part is the machine name.
@end deftypefun
@deftypefun void mu_sieve_get_diag_stream (mu_sieve_machine_t @var{mach}, @
mu_stream_t *@var{pstr})
Get a reference to the machine's diagnostic stream. The obtained
stream must be dereferenced by using @code{mu_stream_unref} or
@code{mu_stream_destroy}, when no longer needed.
@end deftypefun
@deftypefun void mu_sieve_set_diag_stream (mu_sieve_machine_t @var{mach},
mu_stream_t @var{stream}
Register @var{stream} as the diagnostic stream for this machine. The
reference count of @var{stream} is increased.
@end deftypefun
@deftypefun void mu_sieve_get_dbg_stream (mu_sieve_machine_t @var{mach}, @
mu_stream_t *@var{pstr})
Get a reference to the machine's debug output stream. The obtained
stream must be dereferenced by using @code{mu_stream_unref} or
@code{mu_stream_destroy}, when no longer needed.
@end deftypefun
@deftypefun void mu_sieve_set_dbg_stream (mu_sieve_machine_t @var{mach},
mu_stream_t @var{stream})
Register @var{stream} as the debug output stream for this machine. The
reference count of @var{stream} is increased.
@end deftypefun
@deftypefun void mu_sieve_set_logger (mu_sieve_machine_t @var{mach}, mu_sieve_action_log_t @var{logger})
This function sets the logger function. By default the logger function
is @code{NULL}, which means that the executed actions are not logged.
@end deftypefun
@deftypefun void mu_sieve_set_mailer (mu_sieve_machine_t @var{mach}, mu_mailer_t @var{mailer})
This function sets the mailer. The default mailer is @code{"sendmail:"}.
@end deftypefun
@deftypefun void mu_sieve_set_daemon_email (mu_sieve_machine_t @var{mach}, const char *@var{email})
This functions sets the @dfn{daemon email} for @code{reject} and
@code{redirect} actions.
@end deftypefun
@deftypefun int mu_sieve_is_dry_run (mu_sieve_machine_t @var{mach})
The @code{mu_sieve_is_dry_run()} returns 1 if the machine is in @dfn{dry
run} state, i.e. it will only log the actions that would have been
executed without actually executing them. The dry run state is set
by calling @code{mu_sieve_set_debug_level()} if its last argument has
the @code{MU_SIEVE_DRY_RUN} bit set.
@end deftypefun
@deftypefun {const char *} mu_sieve_type_str (mu_sieve_data_type @var{type})
Returns the string representation for the given sieve data type. The
return value is a pointer to a static constant string.
@end deftypefun
@node Logging and Diagnostic Functions
@subsection Logging and Diagnostic Functions
@deftypefun void mu_sieve_error (mu_sieve_machine_t @var{mach}, const char *@var{fmt}, @dots{})
Format and output an error message using error printer of the machine @var{mach}.
@end deftypefun
@deftypefun void mu_sieve_debug (mu_sieve_machine_t @var{mach}, const char *@var{fmt}, @dots{})
Format and output a debug message using debug printer of the machine @var{mach}.
@end deftypefun
@deftypefun void mu_sieve_log_action (mu_sieve_machine_t @var{mach}, const char *@var{action}, const char *@var{fmt}, @dots{})
Log a sieve action using logger function associated with the machine @var{mach}.
@end deftypefun
@deftypefun void mu_sieve_abort (mu_sieve_machine_t @var{mach})
Immediately abort the execution of the script.
@end deftypefun
@node String Accessors
@subsection String Accessors
Strings are stored in a special memory area within the Sieve machine,
which is called @dfn{string space}. A string is identified by its
index in the string space. Array of strings is represented internally
as a contiguous area within the string space that holds one or more
strings. An array is identified by the index of its first element and
number of elements in it:
@example
struct mu_sieve_slice
@{
size_t first; /* Index of the first object */
size_t count; /* Number of objects */
@};
@end example
A single sieve string is represented by an array of strings with
zero @code{count}.
To obtain actual value of a string, use the @code{mu_sieve_string}
function:
@deftypefun {char *} mu_sieve_string (mu_sieve_machine_t @var{mach}, @
mu_sieve_slice_t @var{slice}, @
size_t @var{n})
Return actual textual value of the @var{n}th string in the array
@var{slice} of the Sieve machine @var{mach}.
If the @code{variables} extension is required, the returned value will
have variables expanded.
@end deftypefun
Two functions are provided for manipulating raw string values. Each
string in the string space is kept in the following structure:
@example
typedef struct mu_sieve_string
@{
unsigned constant:1; /* String is constant */
unsigned changed:1; /* String value has changed */
char *orig; /* String original value */
char *exp; /* Actual string value after expansion */
void *rx; /* Pointer to the corresponding regular expr */
@} mu_sieve_string_t;
@end example
All fields in this structure shall be deemed constant. Sieve code
(such as new actions or tests) should never try to change any of them.
The meaning of its fields is:
@deftypecv Field {struct mu_sieve_string} unsigned constant
Zero if the string is subject to variable expansion and 1 otherwise.
This field is defined when compiling the Sieve script.
@end deftypecv
@deftypecv Field {struct mu_sieve_string} unsigned changed
This field is @samp{1} if the expanded value of the string has changed
since it was retrieved for the last time. This is used by the Sieve
machine to determine whether the associated regular expression (if
any) needs to be recompiled.
This field is modified by the string accessor functions. Obviously,
if @code{constant == 1}, then @code{changed == 0}.
@end deftypecv
@deftypecv Field {struct mu_sieve_string} {char *} orig
A pointer to the original string value, as it appeared in the Sieve
script source file.
@end deftypecv
@deftypecv Field {struct mu_sieve_string} {char *} exp
A pointer to the string value after expansion. Valid only if
@code{constant == 0}.
@end deftypecv
@deftypecv Field {struct mu_sieve_string} {void *} rx
Points to the memory area containig the compiled regular expression
corresponding to that string. This member is valid, e.g. if the
string represents the second argument of a test used with
@code{:match} or @code{:regex} tag.
@end deftypecv
The raw string values are accessed via the following two functions:
@deftypefun {mu_sieve_string_t *} mu_sieve_string_raw (mu_sieve_machine_t @var{mach}, @
mu_sieve_slice_t @var{slice}, @
size_t @var{n})
Returns pointer to the structure representing @var{n}th string in
slice @var{slice}. A runtime exception is raised if @var{n} is out of
range represented by @var{slice}.
Extension writers should treat this as a constant object.
@end deftypefun
@deftypefun {char *} mu_sieve_string_get (mu_sieve_machine_t @var{mach}, @
mu_sieve_string_t *@var{string})
Evaluate @var{string} and return its textual representation. If the
@code{variables} extension is required, this function performs
variable substitution.
@end deftypefun
@node Argument Accessors
@subsection Argument Accessors
@node Symbol Space Functions
@subsection Symbol Space Functions
@deftypefun {mu_sieve_register_t *} mu_sieve_test_lookup (mu_sieve_machine_t @var{mach}, const char *@var{name})
Find a register object describing the test @var{name}. Returns
@code{NULL} if no such test exists.
@end deftypefun
@deftypefun {mu_sieve_register_t *} mu_sieve_action_lookup (mu_sieve_machine_t @var{mach}, const char *@var{name})
Find a register object describing the action @var{name}. Returns
@code{NULL} if no such action exists.
@end deftypefun
@deftypefun int mu_sieve_register_test (mu_sieve_machine_t @var{mach}, const char *@var{name}, mu_sieve_handler_t @var{handler}, mu_sieve_data_type *@var{arg_types}, mu_sieve_tag_group_t *@var{tags}, int @var{required})
@end deftypefun
@deftypefun int mu_sieve_register_action (mu_sieve_machine_t @var{mach}, const char *@var{name}, mu_sieve_handler_t @var{handler}, mu_sieve_data_type *@var{arg_types}, mu_sieve_tag_group_t *@var{tags}, int @var{required})
@end deftypefun
@deftypefun int mu_sieve_register_comparator (mu_sieve_machine_t @var{mach}, const char *@var{name}, int @var{required}, mu_sieve_comparator_t @var{is}, mu_sieve_comparator_t @var{contains}, mu_sieve_comparator_t @var{matches}, mu_sieve_comparator_t @var{regex}, mu_sieve_comparator_t @var{eq})
@end deftypefun
@deftypefun int mu_sieve_tag_lookup (mu_list_t @var{taglist}, char *@var{name}, mu_sieve_value_t **@var{arg})
@end deftypefun
@deftypefun int mu_sieve_load_ext (mu_sieve_machine_t @var{mach}, const char *@var{name})
@end deftypefun
@node Memory Allocation
@subsection Memory Allocation
The following functions act as their libc counterparts. The allocated
memory is associated with the @var{mach} argument and is automatically
freed upon the call to @code{mu_sieve_machine_destroy (@var{mach})}.
@deftypefun {void *} mu_sieve_malloc (mu_sieve_machine_t @var{mach}, size_t @var{size})
Allocates @var{size} bytes and returns a pointer to the allocated memory.
@end deftypefun
@deftypefun {char *} mu_sieve_strdup (mu_sieve_machine_t @var{mach}, const char *@var{str})
This function returns a pointer to a new string which is a duplicate of the
string @var{str}.
@end deftypefun
@deftypefun {void *} mu_sieve_realloc (mu_sieve_machine_t @var{mach}, void *@var{ptr}, size_t @var{size})
Changes the size of the memory block pointed to by @var{ptr} to
@var{size} bytes. The contents will be unchanged to the minimum of the
old and new sizes; newly allocated memory will be uninitialized. If
@var{ptr} is @code{NULL}, the call is equivalent to
@code{mu_sieve_malloc(@var{mach}, @var{size})}; if @var{size} is equal to
zero, the call is equivalent to @code{mu_sieve_free(@var{ptr})}. Unless
@var{ptr} is @code{NULL}, it must have been returned by an earlier
call to @code{mu_sieve_malloc()} or @code{mu_sieve_realloc()}.
@end deftypefun
@deftypefun void mu_sieve_free (mu_sieve_machine_t @var{mach}, void *@var{ptr})
@code{mu_sieve_free()} frees the memory space pointed to by @var{ptr} and
detaches it from the destructor list of @var{mach}. The @var{ptr} must
have been returned by a previous call to @code{mu_sieve_malloc()} or
@code{mu_sieve_realloc()}. Otherwise, or if @code{mu_sieve_mfree(@var{ptr})}
has already been called before, undefined behaviour occurs.
If @var{ptr} is @code{NULL}, no operation is performed.
@end deftypefun
@node Compiling and Executing the Script
@subsection Compiling and Executing the Script
@deftypefun int mu_sieve_compile (mu_sieve_machine_t @var{mach}, const char *@var{name})
Compile the sieve script from the file @var{name}.
@end deftypefun
@deftypefun int mu_sieve_mailbox (mu_sieve_machine_t @var{mach}, mu_mailbox_t @var{mbox})
Execute the code from the given instance of sieve machine @var{mach}
over each message in the mailbox @var{mbox}.
@end deftypefun
@deftypefun int mu_sieve_message (mu_sieve_machine_t @var{mach}, mu_message_t @var{message})
Execute the code from the given instance of sieve machine @var{mach}
over the @var{message}.
@end deftypefun
@deftypefun int mu_sieve_disass (mu_sieve_machine_t @var{mach})
Dump the disassembled code of the sieve machine @var{mach}.
@end deftypefun
@node Writing Loadable Commands
@subsection Writing Loadable Commands
This section contains an example of how to write external loadable
commands for GNU libmu_sieve.
@smallexample
@include numaddr.inc
@end smallexample