regexec.c 127 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
/* Extended regular expression matching and search library.
   Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License along
   with this program; if not, write to the Free Software Foundation,
   Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */

static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags,
				     Idx n) internal_function;
static void match_ctx_clean (re_match_context_t *mctx) internal_function;
static void match_ctx_free (re_match_context_t *cache) internal_function;
static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, Idx node,
					  Idx str_idx, Idx from, Idx to)
     internal_function;
static Idx search_cur_bkref_entry (const re_match_context_t *mctx, Idx str_idx)
     internal_function;
static reg_errcode_t match_ctx_add_subtop (re_match_context_t *mctx, Idx node,
					   Idx str_idx) internal_function;
static re_sub_match_last_t * match_ctx_add_sublast (re_sub_match_top_t *subtop,
						    Idx node, Idx str_idx)
     internal_function;
static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts,
			   re_dfastate_t **limited_sts, Idx last_node,
			   Idx last_str_idx)
     internal_function;
static reg_errcode_t re_search_internal (const regex_t *preg,
					 const char *string, Idx length,
					 Idx start, Idx last_start, Idx stop,
					 size_t nmatch, regmatch_t pmatch[],
					 int eflags) internal_function;
static regoff_t re_search_2_stub (struct re_pattern_buffer *bufp,
				  const char *string1, Idx length1,
				  const char *string2, Idx length2,
				  Idx start, regoff_t range,
				  struct re_registers *regs,
				  Idx stop, bool ret_len) internal_function;
static regoff_t re_search_stub (struct re_pattern_buffer *bufp,
				const char *string, Idx length, Idx start,
				regoff_t range, Idx stop,
				struct re_registers *regs,
				bool ret_len) internal_function;
static unsigned int re_copy_regs (struct re_registers *regs, regmatch_t *pmatch,
				  Idx nregs, int regs_allocated)
     internal_function;
static reg_errcode_t prune_impossible_nodes (re_match_context_t *mctx)
     internal_function;
static Idx check_matching (re_match_context_t *mctx, bool fl_longest_match,
			   Idx *p_match_first) internal_function;
static Idx check_halt_state_context (const re_match_context_t *mctx,
				     const re_dfastate_t *state, Idx idx)
     internal_function;
static void update_regs (const re_dfa_t *dfa, regmatch_t *pmatch,
			 regmatch_t *prev_idx_match, Idx cur_node,
			 Idx cur_idx, Idx nmatch) internal_function;
static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs,
				      Idx str_idx, Idx dest_node, Idx nregs,
				      regmatch_t *regs,
				      re_node_set *eps_via_nodes)
     internal_function;
static reg_errcode_t set_regs (const regex_t *preg,
			       const re_match_context_t *mctx,
			       size_t nmatch, regmatch_t *pmatch,
			       bool fl_backtrack) internal_function;
static reg_errcode_t free_fail_stack_return (struct re_fail_stack_t *fs)
     internal_function;

#ifdef RE_ENABLE_I18N
static int sift_states_iter_mb (const re_match_context_t *mctx,
				re_sift_context_t *sctx,
				Idx node_idx, Idx str_idx, Idx max_str_idx)
     internal_function;
#endif /* RE_ENABLE_I18N */
static reg_errcode_t sift_states_backward (const re_match_context_t *mctx,
					   re_sift_context_t *sctx)
     internal_function;
static reg_errcode_t build_sifted_states (const re_match_context_t *mctx,
					  re_sift_context_t *sctx, Idx str_idx,
					  re_node_set *cur_dest)
     internal_function;
static reg_errcode_t update_cur_sifted_state (const re_match_context_t *mctx,
					      re_sift_context_t *sctx,
					      Idx str_idx,
					      re_node_set *dest_nodes)
     internal_function;
static reg_errcode_t add_epsilon_src_nodes (const re_dfa_t *dfa,
					    re_node_set *dest_nodes,
					    const re_node_set *candidates)
     internal_function;
static bool check_dst_limits (const re_match_context_t *mctx,
			      const re_node_set *limits,
			      Idx dst_node, Idx dst_idx, Idx src_node,
			      Idx src_idx) internal_function;
static int check_dst_limits_calc_pos_1 (const re_match_context_t *mctx,
					int boundaries, Idx subexp_idx,
					Idx from_node, Idx bkref_idx)
     internal_function;
static int check_dst_limits_calc_pos (const re_match_context_t *mctx,
				      Idx limit, Idx subexp_idx,
				      Idx node, Idx str_idx,
				      Idx bkref_idx) internal_function;
static reg_errcode_t check_subexp_limits (const re_dfa_t *dfa,
					  re_node_set *dest_nodes,
					  const re_node_set *candidates,
					  re_node_set *limits,
					  struct re_backref_cache_entry *bkref_ents,
					  Idx str_idx) internal_function;
static reg_errcode_t sift_states_bkref (const re_match_context_t *mctx,
					re_sift_context_t *sctx,
					Idx str_idx, const re_node_set *candidates)
     internal_function;
static reg_errcode_t merge_state_array (const re_dfa_t *dfa,
					re_dfastate_t **dst,
					re_dfastate_t **src, Idx num)
     internal_function;
static re_dfastate_t *find_recover_state (reg_errcode_t *err,
					 re_match_context_t *mctx) internal_function;
static re_dfastate_t *transit_state (reg_errcode_t *err,
				     re_match_context_t *mctx,
				     re_dfastate_t *state) internal_function;
static re_dfastate_t *merge_state_with_log (reg_errcode_t *err,
					    re_match_context_t *mctx,
					    re_dfastate_t *next_state)
     internal_function;
static reg_errcode_t check_subexp_matching_top (re_match_context_t *mctx,
						re_node_set *cur_nodes,
						Idx str_idx) internal_function;
#if 0
static re_dfastate_t *transit_state_sb (reg_errcode_t *err,
					re_match_context_t *mctx,
					re_dfastate_t *pstate)
     internal_function;
#endif
#ifdef RE_ENABLE_I18N
static reg_errcode_t transit_state_mb (re_match_context_t *mctx,
				       re_dfastate_t *pstate)
     internal_function;
#endif /* RE_ENABLE_I18N */
static reg_errcode_t transit_state_bkref (re_match_context_t *mctx,
					  const re_node_set *nodes)
     internal_function;
static reg_errcode_t get_subexp (re_match_context_t *mctx,
				 Idx bkref_node, Idx bkref_str_idx)
     internal_function;
static reg_errcode_t get_subexp_sub (re_match_context_t *mctx,
				     const re_sub_match_top_t *sub_top,
				     re_sub_match_last_t *sub_last,
				     Idx bkref_node, Idx bkref_str)
     internal_function;
static Idx find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes,
			     Idx subexp_idx, int type) internal_function;
static reg_errcode_t check_arrival (re_match_context_t *mctx,
				    state_array_t *path, Idx top_node,
				    Idx top_str, Idx last_node, Idx last_str,
				    int type) internal_function;
static reg_errcode_t check_arrival_add_next_nodes (re_match_context_t *mctx,
						   Idx str_idx,
						   re_node_set *cur_nodes,
						   re_node_set *next_nodes)
     internal_function;
static reg_errcode_t check_arrival_expand_ecl (const re_dfa_t *dfa,
					       re_node_set *cur_nodes,
					       Idx ex_subexp, int type)
     internal_function;
static reg_errcode_t check_arrival_expand_ecl_sub (const re_dfa_t *dfa,
						   re_node_set *dst_nodes,
						   Idx target, Idx ex_subexp,
						   int type) internal_function;
static reg_errcode_t expand_bkref_cache (re_match_context_t *mctx,
					 re_node_set *cur_nodes, Idx cur_str,
					 Idx subexp_num, int type)
     internal_function;
static bool build_trtable (const re_dfa_t *dfa,
			   re_dfastate_t *state) internal_function;
#ifdef RE_ENABLE_I18N
static int check_node_accept_bytes (const re_dfa_t *dfa, Idx node_idx,
				    const re_string_t *input, Idx idx)
     internal_function;
# ifdef _LIBC
static unsigned int find_collation_sequence_value (const unsigned char *mbs,
						   size_t name_len)
     internal_function;
# endif /* _LIBC */
#endif /* RE_ENABLE_I18N */
static Idx group_nodes_into_DFAstates (const re_dfa_t *dfa,
				       const re_dfastate_t *state,
				       re_node_set *states_node,
				       bitset_t *states_ch) internal_function;
static bool check_node_accept (const re_match_context_t *mctx,
			       const re_token_t *node, Idx idx)
     internal_function;
static reg_errcode_t extend_buffers (re_match_context_t *mctx)
     internal_function;

/* Entry point for POSIX code.  */

/* regexec searches for a given pattern, specified by PREG, in the
   string STRING.

   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
   least NMATCH elements, and we set them to the offsets of the
   corresponding matched substrings.

   EFLAGS specifies `execution flags' which affect matching: if
   REG_NOTBOL is set, then ^ does not match at the beginning of the
   string; if REG_NOTEOL is set, then $ does not match at the end.

   We return 0 if we find a match and REG_NOMATCH if not.  */

int
regexec (preg, string, nmatch, pmatch, eflags)
    const regex_t *__restrict preg;
    const char *__restrict string;
    size_t nmatch;
    regmatch_t pmatch[];
    int eflags;
{
  reg_errcode_t err;
  Idx start, length;
#ifdef _LIBC
  re_dfa_t *dfa = (re_dfa_t *) preg->buffer;
#endif

  if (eflags & ~(REG_NOTBOL | REG_NOTEOL | REG_STARTEND))
    return REG_BADPAT;

  if (eflags & REG_STARTEND)
    {
      start = pmatch[0].rm_so;
      length = pmatch[0].rm_eo;
    }
  else
    {
      start = 0;
      length = strlen (string);
    }

  __libc_lock_lock (dfa->lock);
  if (preg->no_sub)
    err = re_search_internal (preg, string, length, start, length,
			      length, 0, NULL, eflags);
  else
    err = re_search_internal (preg, string, length, start, length,
			      length, nmatch, pmatch, eflags);
  __libc_lock_unlock (dfa->lock);
  return err != REG_NOERROR;
}

#ifdef _LIBC
# include <shlib-compat.h>
versioned_symbol (libc, __regexec, regexec, GLIBC_2_3_4);

# if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3_4)
__typeof__ (__regexec) __compat_regexec;

int
attribute_compat_text_section
__compat_regexec (const regex_t *__restrict preg,
		  const char *__restrict string, size_t nmatch,
		  regmatch_t pmatch[], int eflags)
{
  return regexec (preg, string, nmatch, pmatch,
		  eflags & (REG_NOTBOL | REG_NOTEOL));
}
compat_symbol (libc, __compat_regexec, regexec, GLIBC_2_0);
# endif
#endif

/* Entry points for GNU code.  */

/* re_match, re_search, re_match_2, re_search_2

   The former two functions operate on STRING with length LENGTH,
   while the later two operate on concatenation of STRING1 and STRING2
   with lengths LENGTH1 and LENGTH2, respectively.

   re_match() matches the compiled pattern in BUFP against the string,
   starting at index START.

   re_search() first tries matching at index START, then it tries to match
   starting from index START + 1, and so on.  The last start position tried
   is START + RANGE.  (Thus RANGE = 0 forces re_search to operate the same
   way as re_match().)

   The parameter STOP of re_{match,search}_2 specifies that no match exceeding
   the first STOP characters of the concatenation of the strings should be
   concerned.

   If REGS is not NULL, and BUFP->no_sub is not set, the offsets of the match
   and all groups is stored in REGS.  (For the "_2" variants, the offsets are
   computed relative to the concatenation, not relative to the individual
   strings.)

   On success, re_match* functions return the length of the match, re_search*
   return the position of the start of the match.  Return value -1 means no
   match was found and -2 indicates an internal error.  */

regoff_t
re_match (bufp, string, length, start, regs)
    struct re_pattern_buffer *bufp;
    const char *string;
    Idx length, start;
    struct re_registers *regs;
{
  return re_search_stub (bufp, string, length, start, 0, length, regs, true);
}
#ifdef _LIBC
weak_alias (__re_match, re_match)
#endif

regoff_t
re_search (bufp, string, length, start, range, regs)
    struct re_pattern_buffer *bufp;
    const char *string;
    Idx length, start;
    regoff_t range;
    struct re_registers *regs;
{
  return re_search_stub (bufp, string, length, start, range, length, regs,
			 false);
}
#ifdef _LIBC
weak_alias (__re_search, re_search)
#endif

regoff_t
re_match_2 (bufp, string1, length1, string2, length2, start, regs, stop)
    struct re_pattern_buffer *bufp;
    const char *string1, *string2;
    Idx length1, length2, start, stop;
    struct re_registers *regs;
{
  return re_search_2_stub (bufp, string1, length1, string2, length2,
			   start, 0, regs, stop, true);
}
#ifdef _LIBC
weak_alias (__re_match_2, re_match_2)
#endif

regoff_t
re_search_2 (bufp, string1, length1, string2, length2, start, range, regs, stop)
    struct re_pattern_buffer *bufp;
    const char *string1, *string2;
    Idx length1, length2, start, stop;
    regoff_t range;
    struct re_registers *regs;
{
  return re_search_2_stub (bufp, string1, length1, string2, length2,
			   start, range, regs, stop, false);
}
#ifdef _LIBC
weak_alias (__re_search_2, re_search_2)
#endif

static regoff_t
internal_function
re_search_2_stub (struct re_pattern_buffer *bufp,
		  const char *string1, Idx length1,
		  const char *string2, Idx length2,
		  Idx start, regoff_t range, struct re_registers *regs,
		  Idx stop, bool ret_len)
{
  const char *str;
  regoff_t rval;
  Idx len = length1 + length2;
  char *s = NULL;

  if (BE (length1 < 0 || length2 < 0 || stop < 0 || len < length1, 0))
    return -2;

  /* Concatenate the strings.  */
  if (length2 > 0)
    if (length1 > 0)
      {
	s = re_malloc (char, len);

	if (BE (s == NULL, 0))
	  return -2;
#ifdef _LIBC
	memcpy (__mempcpy (s, string1, length1), string2, length2);
#else
	memcpy (s, string1, length1);
	memcpy (s + length1, string2, length2);
#endif
	str = s;
      }
    else
      str = string2;
  else
    str = string1;

  rval = re_search_stub (bufp, str, len, start, range, stop, regs,
			 ret_len);
  re_free (s);
  return rval;
}

/* The parameters have the same meaning as those of re_search.
   Additional parameters:
   If RET_LEN is true the length of the match is returned (re_match style);
   otherwise the position of the match is returned.  */

static regoff_t
internal_function
re_search_stub (struct re_pattern_buffer *bufp,
		const char *string, Idx length,
		Idx start, regoff_t range, Idx stop, struct re_registers *regs,
		bool ret_len)
{
  reg_errcode_t result;
  regmatch_t *pmatch;
  Idx nregs;
  regoff_t rval;
  int eflags = 0;
#ifdef _LIBC
  re_dfa_t *dfa = (re_dfa_t *) bufp->buffer;
#endif
  Idx last_start = start + range;

  /* Check for out-of-range.  */
  if (BE (start < 0 || start > length, 0))
    return -1;
  if (BE (length < last_start || (0 <= range && last_start < start), 0))
    last_start = length;
  else if (BE (last_start < 0 || (range < 0 && start <= last_start), 0))
    last_start = 0;

  __libc_lock_lock (dfa->lock);

  eflags |= (bufp->not_bol) ? REG_NOTBOL : 0;
  eflags |= (bufp->not_eol) ? REG_NOTEOL : 0;

  /* Compile fastmap if we haven't yet.  */
  if (start < last_start && bufp->fastmap != NULL && !bufp->fastmap_accurate)
    re_compile_fastmap (bufp);

  if (BE (bufp->no_sub, 0))
    regs = NULL;

  /* We need at least 1 register.  */
  if (regs == NULL)
    nregs = 1;
  else if (BE (bufp->regs_allocated == REGS_FIXED
	       && regs->num_regs <= bufp->re_nsub, 0))
    {
      nregs = regs->num_regs;
      if (BE (nregs < 1, 0))
	{
	  /* Nothing can be copied to regs.  */
	  regs = NULL;
	  nregs = 1;
	}
    }
  else
    nregs = bufp->re_nsub + 1;
  pmatch = re_malloc (regmatch_t, nregs);
  if (BE (pmatch == NULL, 0))
    {
      rval = -2;
      goto out;
    }

  result = re_search_internal (bufp, string, length, start, last_start, stop,
			       nregs, pmatch, eflags);

  rval = 0;

  /* I hope we needn't fill ther regs with -1's when no match was found.  */
  if (result != REG_NOERROR)
    rval = -1;
  else if (regs != NULL)
    {
      /* If caller wants register contents data back, copy them.  */
      bufp->regs_allocated = re_copy_regs (regs, pmatch, nregs,
					   bufp->regs_allocated);
      if (BE (bufp->regs_allocated == REGS_UNALLOCATED, 0))
	rval = -2;
    }

  if (BE (rval == 0, 1))
    {
      if (ret_len)
	{
	  assert (pmatch[0].rm_so == start);
	  rval = pmatch[0].rm_eo - start;
	}
      else
	rval = pmatch[0].rm_so;
    }
  re_free (pmatch);
 out:
  __libc_lock_unlock (dfa->lock);
  return rval;
}

static unsigned int
internal_function
re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, Idx nregs,
	      int regs_allocated)
{
  int rval = REGS_REALLOCATE;
  Idx i;
  Idx need_regs = nregs + 1;
  /* We need one extra element beyond `num_regs' for the `-1' marker GNU code
     uses.  */

  /* Have the register data arrays been allocated?  */
  if (regs_allocated == REGS_UNALLOCATED)
    { /* No.  So allocate them with malloc.  */
      regs->start = re_malloc (regoff_t, need_regs);
      if (BE (regs->start == NULL, 0))
	return REGS_UNALLOCATED;
      regs->end = re_malloc (regoff_t, need_regs);
      if (BE (regs->end == NULL, 0))
	{
	  re_free (regs->start);
	  return REGS_UNALLOCATED;
	}
      regs->num_regs = need_regs;
    }
  else if (regs_allocated == REGS_REALLOCATE)
    { /* Yes.  If we need more elements than were already
	 allocated, reallocate them.  If we need fewer, just
	 leave it alone.  */
      if (BE (need_regs > regs->num_regs, 0))
	{
	  regoff_t *new_start = re_realloc (regs->start, regoff_t, need_regs);
	  regoff_t *new_end;
	  if (BE (new_start == NULL, 0))
	    return REGS_UNALLOCATED;
	  new_end = re_realloc (regs->end, regoff_t, need_regs);
	  if (BE (new_end == NULL, 0))
	    {
	      re_free (new_start);
	      return REGS_UNALLOCATED;
	    }
	  regs->start = new_start;
	  regs->end = new_end;
	  regs->num_regs = need_regs;
	}
    }
  else
    {
      assert (regs_allocated == REGS_FIXED);
      /* This function may not be called with REGS_FIXED and nregs too big.  */
      assert (regs->num_regs >= nregs);
      rval = REGS_FIXED;
    }

  /* Copy the regs.  */
  for (i = 0; i < nregs; ++i)
    {
      regs->start[i] = pmatch[i].rm_so;
      regs->end[i] = pmatch[i].rm_eo;
    }
  for ( ; i < regs->num_regs; ++i)
    regs->start[i] = regs->end[i] = -1;

  return rval;
}

/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
   this memory for recording register information.  STARTS and ENDS
   must be allocated using the malloc library routine, and must each
   be at least NUM_REGS * sizeof (regoff_t) bytes long.

   If NUM_REGS == 0, then subsequent matches should allocate their own
   register data.

   Unless this function is called, the first search or match using
   PATTERN_BUFFER will allocate its own register data, without
   freeing the old data.  */

void
re_set_registers (bufp, regs, num_regs, starts, ends)
    struct re_pattern_buffer *bufp;
    struct re_registers *regs;
    __re_size_t num_regs;
    regoff_t *starts, *ends;
{
  if (num_regs)
    {
      bufp->regs_allocated = REGS_REALLOCATE;
      regs->num_regs = num_regs;
      regs->start = starts;
      regs->end = ends;
    }
  else
    {
      bufp->regs_allocated = REGS_UNALLOCATED;
      regs->num_regs = 0;
      regs->start = regs->end = NULL;
    }
}
#ifdef _LIBC
weak_alias (__re_set_registers, re_set_registers)
#endif

/* Entry points compatible with 4.2 BSD regex library.  We don't define
   them unless specifically requested.  */

#if defined _REGEX_RE_COMP || defined _LIBC
int
# ifdef _LIBC
weak_function
# endif
re_exec (s)
     const char *s;
{
  return 0 == regexec (&re_comp_buf, s, 0, NULL, 0);
}
#endif /* _REGEX_RE_COMP */

/* Internal entry point.  */

/* Searches for a compiled pattern PREG in the string STRING, whose
   length is LENGTH.  NMATCH, PMATCH, and EFLAGS have the same
   meaning as with regexec.  LAST_START is START + RANGE, where
   START and RANGE have the same meaning as with re_search.
   Return REG_NOERROR if we find a match, and REG_NOMATCH if not,
   otherwise return the error code.
   Note: We assume front end functions already check ranges.
   (0 <= LAST_START && LAST_START <= LENGTH)  */

static reg_errcode_t
internal_function
re_search_internal (const regex_t *preg,
		    const char *string, Idx length,
		    Idx start, Idx last_start, Idx stop,
		    size_t nmatch, regmatch_t pmatch[],
		    int eflags)
{
  reg_errcode_t err;
  const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer;
  Idx left_lim, right_lim;
  int incr;
  bool fl_longest_match;
  int match_kind;
  Idx match_first;
  Idx match_last = REG_MISSING;
  Idx extra_nmatch;
  bool sb;
  int ch;
#if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L)
  re_match_context_t mctx = { .dfa = dfa };
#else
  re_match_context_t mctx;
#endif
  char *fastmap = ((preg->fastmap != NULL && preg->fastmap_accurate
		    && start != last_start && !preg->can_be_null)
		   ? preg->fastmap : NULL);
  RE_TRANSLATE_TYPE t = preg->translate;

#if !(defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L))
  memset (&mctx, '\0', sizeof (re_match_context_t));
  mctx.dfa = dfa;
#endif

  extra_nmatch = (nmatch > preg->re_nsub) ? nmatch - (preg->re_nsub + 1) : 0;
  nmatch -= extra_nmatch;

  /* Check if the DFA haven't been compiled.  */
  if (BE (preg->used == 0 || dfa->init_state == NULL
	  || dfa->init_state_word == NULL || dfa->init_state_nl == NULL
	  || dfa->init_state_begbuf == NULL, 0))
    return REG_NOMATCH;

#ifdef DEBUG
  /* We assume front-end functions already check them.  */
  assert (0 <= last_start && last_start <= length);
#endif

  /* If initial states with non-begbuf contexts have no elements,
     the regex must be anchored.  If preg->newline_anchor is set,
     we'll never use init_state_nl, so do not check it.  */
  if (dfa->init_state->nodes.nelem == 0
      && dfa->init_state_word->nodes.nelem == 0
      && (dfa->init_state_nl->nodes.nelem == 0
	  || !preg->newline_anchor))
    {
      if (start != 0 && last_start != 0)
        return REG_NOMATCH;
      start = last_start = 0;
    }

  /* We must check the longest matching, if nmatch > 0.  */
  fl_longest_match = (nmatch != 0 || dfa->nbackref);

  err = re_string_allocate (&mctx.input, string, length, dfa->nodes_len + 1,
			    preg->translate, preg->syntax & RE_ICASE, dfa);
  if (BE (err != REG_NOERROR, 0))
    goto free_return;
  mctx.input.stop = stop;
  mctx.input.raw_stop = stop;
  mctx.input.newline_anchor = preg->newline_anchor;

  err = match_ctx_init (&mctx, eflags, dfa->nbackref * 2);
  if (BE (err != REG_NOERROR, 0))
    goto free_return;

  /* We will log all the DFA states through which the dfa pass,
     if nmatch > 1, or this dfa has "multibyte node", which is a
     back-reference or a node which can accept multibyte character or
     multi character collating element.  */
  if (nmatch > 1 || dfa->has_mb_node)
    {
      /* Avoid overflow.  */
      if (BE (SIZE_MAX / sizeof (re_dfastate_t *) <= mctx.input.bufs_len, 0))
	{
	  err = REG_ESPACE;
	  goto free_return;
	}

      mctx.state_log = re_malloc (re_dfastate_t *, mctx.input.bufs_len + 1);
      if (BE (mctx.state_log == NULL, 0))
	{
	  err = REG_ESPACE;
	  goto free_return;
	}
    }
  else
    mctx.state_log = NULL;

  match_first = start;
  mctx.input.tip_context = (eflags & REG_NOTBOL) ? CONTEXT_BEGBUF
			   : CONTEXT_NEWLINE | CONTEXT_BEGBUF;

  /* Check incrementally whether of not the input string match.  */
  incr = (last_start < start) ? -1 : 1;
  left_lim = (last_start < start) ? last_start : start;
  right_lim = (last_start < start) ? start : last_start;
  sb = dfa->mb_cur_max == 1;
  match_kind =
    (fastmap
     ? ((sb || !(preg->syntax & RE_ICASE || t) ? 4 : 0)
	| (start <= last_start ? 2 : 0)
	| (t != NULL ? 1 : 0))
     : 8);

  for (;; match_first += incr)
    {
      err = REG_NOMATCH;
      if (match_first < left_lim || right_lim < match_first)
	goto free_return;

      /* Advance as rapidly as possible through the string, until we
	 find a plausible place to start matching.  This may be done
	 with varying efficiency, so there are various possibilities:
	 only the most common of them are specialized, in order to
	 save on code size.  We use a switch statement for speed.  */
      switch (match_kind)
	{
	case 8:
	  /* No fastmap.  */
	  break;

	case 7:
	  /* Fastmap with single-byte translation, match forward.  */
	  while (BE (match_first < right_lim, 1)
		 && !fastmap[t[(unsigned char) string[match_first]]])
	    ++match_first;
	  goto forward_match_found_start_or_reached_end;

	case 6:
	  /* Fastmap without translation, match forward.  */
	  while (BE (match_first < right_lim, 1)
		 && !fastmap[(unsigned char) string[match_first]])
	    ++match_first;

	forward_match_found_start_or_reached_end:
	  if (BE (match_first == right_lim, 0))
	    {
	      ch = match_first >= length
		       ? 0 : (unsigned char) string[match_first];
	      if (!fastmap[t ? t[ch] : ch])
		goto free_return;
	    }
	  break;

	case 4:
	case 5:
	  /* Fastmap without multi-byte translation, match backwards.  */
	  while (match_first >= left_lim)
	    {
	      ch = match_first >= length
		       ? 0 : (unsigned char) string[match_first];
	      if (fastmap[t ? t[ch] : ch])
		break;
	      --match_first;
	    }
	  if (match_first < left_lim)
	    goto free_return;
	  break;

	default:
	  /* In this case, we can't determine easily the current byte,
	     since it might be a component byte of a multibyte
	     character.  Then we use the constructed buffer instead.  */
	  for (;;)
	    {
	      /* If MATCH_FIRST is out of the valid range, reconstruct the
		 buffers.  */
	      __re_size_t offset = match_first - mctx.input.raw_mbs_idx;
	      if (BE (offset >= (__re_size_t) mctx.input.valid_raw_len, 0))
		{
		  err = re_string_reconstruct (&mctx.input, match_first,
					       eflags);
		  if (BE (err != REG_NOERROR, 0))
		    goto free_return;

		  offset = match_first - mctx.input.raw_mbs_idx;
		}
	      /* If MATCH_FIRST is out of the buffer, leave it as '\0'.
		 Note that MATCH_FIRST must not be smaller than 0.  */
	      ch = (match_first >= length
		    ? 0 : re_string_byte_at (&mctx.input, offset));
	      if (fastmap[ch])
		break;
	      match_first += incr;
	      if (match_first < left_lim || match_first > right_lim)
	        {
	          err = REG_NOMATCH;
	          goto free_return;
	        }
	    }
	  break;
	}

      /* Reconstruct the buffers so that the matcher can assume that
	 the matching starts from the beginning of the buffer.  */
      err = re_string_reconstruct (&mctx.input, match_first, eflags);
      if (BE (err != REG_NOERROR, 0))
	goto free_return;

#ifdef RE_ENABLE_I18N
     /* Don't consider this char as a possible match start if it part,
	yet isn't the head, of a multibyte character.  */
      if (!sb && !re_string_first_byte (&mctx.input, 0))
	continue;
#endif

      /* It seems to be appropriate one, then use the matcher.  */
      /* We assume that the matching starts from 0.  */
      mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0;
      match_last = check_matching (&mctx, fl_longest_match,
				   start <= last_start ? &match_first : NULL);
      if (match_last != REG_MISSING)
	{
	  if (BE (match_last == REG_ERROR, 0))
	    {
	      err = REG_ESPACE;
	      goto free_return;
	    }
	  else
	    {
	      mctx.match_last = match_last;
	      if ((!preg->no_sub && nmatch > 1) || dfa->nbackref)
		{
		  re_dfastate_t *pstate = mctx.state_log[match_last];
		  mctx.last_node = check_halt_state_context (&mctx, pstate,
							     match_last);
		}
	      if ((!preg->no_sub && nmatch > 1 && dfa->has_plural_match)
		  || dfa->nbackref)
		{
		  err = prune_impossible_nodes (&mctx);
		  if (err == REG_NOERROR)
		    break;
		  if (BE (err != REG_NOMATCH, 0))
		    goto free_return;
		  match_last = REG_MISSING;
		}
	      else
		break; /* We found a match.  */
	    }
	}

      match_ctx_clean (&mctx);
    }

#ifdef DEBUG
  assert (match_last != REG_MISSING);
  assert (err == REG_NOERROR);
#endif

  /* Set pmatch[] if we need.  */
  if (nmatch > 0)
    {
      Idx reg_idx;

      /* Initialize registers.  */
      for (reg_idx = 1; reg_idx < nmatch; ++reg_idx)
	pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1;

      /* Set the points where matching start/end.  */
      pmatch[0].rm_so = 0;
      pmatch[0].rm_eo = mctx.match_last;
      /* FIXME: This function should fail if mctx.match_last exceeds
	 the maximum possible regoff_t value.  We need a new error
	 code REG_OVERFLOW.  */

      if (!preg->no_sub && nmatch > 1)
	{
	  err = set_regs (preg, &mctx, nmatch, pmatch,
			  dfa->has_plural_match && dfa->nbackref > 0);
	  if (BE (err != REG_NOERROR, 0))
	    goto free_return;
	}

      /* At last, add the offset to the each registers, since we slided
	 the buffers so that we could assume that the matching starts
	 from 0.  */
      for (reg_idx = 0; reg_idx < nmatch; ++reg_idx)
	if (pmatch[reg_idx].rm_so != -1)
	  {
#ifdef RE_ENABLE_I18N
	    if (BE (mctx.input.offsets_needed != 0, 0))
	      {
		pmatch[reg_idx].rm_so =
		  (pmatch[reg_idx].rm_so == mctx.input.valid_len
		   ? mctx.input.valid_raw_len
		   : mctx.input.offsets[pmatch[reg_idx].rm_so]);
		pmatch[reg_idx].rm_eo =
		  (pmatch[reg_idx].rm_eo == mctx.input.valid_len
		   ? mctx.input.valid_raw_len
		   : mctx.input.offsets[pmatch[reg_idx].rm_eo]);
	      }
#else
	    assert (mctx.input.offsets_needed == 0);
#endif
	    pmatch[reg_idx].rm_so += match_first;
	    pmatch[reg_idx].rm_eo += match_first;
	  }
      for (reg_idx = 0; reg_idx < extra_nmatch; ++reg_idx)
	{
	  pmatch[nmatch + reg_idx].rm_so = -1;
	  pmatch[nmatch + reg_idx].rm_eo = -1;
	}

      if (dfa->subexp_map)
        for (reg_idx = 0; reg_idx + 1 < nmatch; reg_idx++)
          if (dfa->subexp_map[reg_idx] != reg_idx)
            {
              pmatch[reg_idx + 1].rm_so
                = pmatch[dfa->subexp_map[reg_idx] + 1].rm_so;
              pmatch[reg_idx + 1].rm_eo
                = pmatch[dfa->subexp_map[reg_idx] + 1].rm_eo;
            }
    }

 free_return:
  re_free (mctx.state_log);
  if (dfa->nbackref)
    match_ctx_free (&mctx);
  re_string_destruct (&mctx.input);
  return err;
}

static reg_errcode_t
internal_function
prune_impossible_nodes (re_match_context_t *mctx)
{
  const re_dfa_t *const dfa = mctx->dfa;
  Idx halt_node, match_last;
  reg_errcode_t ret;
  re_dfastate_t **sifted_states;
  re_dfastate_t **lim_states = NULL;
  re_sift_context_t sctx;
#ifdef DEBUG
  assert (mctx->state_log != NULL);
#endif
  match_last = mctx->match_last;
  halt_node = mctx->last_node;

  /* Avoid overflow.  */
  if (BE (SIZE_MAX / sizeof (re_dfastate_t *) <= match_last, 0))
    return REG_ESPACE;

  sifted_states = re_malloc (re_dfastate_t *, match_last + 1);
  if (BE (sifted_states == NULL, 0))
    {
      ret = REG_ESPACE;
      goto free_return;
    }
  if (dfa->nbackref)
    {
      lim_states = re_malloc (re_dfastate_t *, match_last + 1);
      if (BE (lim_states == NULL, 0))
	{
	  ret = REG_ESPACE;
	  goto free_return;
	}
      while (1)
	{
	  memset (lim_states, '\0',
		  sizeof (re_dfastate_t *) * (match_last + 1));
	  sift_ctx_init (&sctx, sifted_states, lim_states, halt_node,
			 match_last);
	  ret = sift_states_backward (mctx, &sctx);
	  re_node_set_free (&sctx.limits);
	  if (BE (ret != REG_NOERROR, 0))
	      goto free_return;
	  if (sifted_states[0] != NULL || lim_states[0] != NULL)
	    break;
	  do
	    {
	      --match_last;
	      if (! REG_VALID_INDEX (match_last))
		{
		  ret = REG_NOMATCH;
		  goto free_return;
		}
	    } while (mctx->state_log[match_last] == NULL
		     || !mctx->state_log[match_last]->halt);
	  halt_node = check_halt_state_context (mctx,
						mctx->state_log[match_last],
						match_last);
	}
      ret = merge_state_array (dfa, sifted_states, lim_states,
			       match_last + 1);
      re_free (lim_states);
      lim_states = NULL;
      if (BE (ret != REG_NOERROR, 0))
	goto free_return;
    }
  else
    {
      sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, match_last);
      ret = sift_states_backward (mctx, &sctx);
      re_node_set_free (&sctx.limits);
      if (BE (ret != REG_NOERROR, 0))
	goto free_return;
    }
  re_free (mctx->state_log);
  mctx->state_log = sifted_states;
  sifted_states = NULL;
  mctx->last_node = halt_node;
  mctx->match_last = match_last;
  ret = REG_NOERROR;
 free_return:
  re_free (sifted_states);
  re_free (lim_states);
  return ret;
}

/* Acquire an initial state and return it.
   We must select appropriate initial state depending on the context,
   since initial states may have constraints like "\<", "^", etc..  */

static inline re_dfastate_t *
__attribute ((always_inline)) internal_function
acquire_init_state_context (reg_errcode_t *err, const re_match_context_t *mctx,
			    Idx idx)
{
  const re_dfa_t *const dfa = mctx->dfa;
  if (dfa->init_state->has_constraint)
    {
      unsigned int context;
      context = re_string_context_at (&mctx->input, idx - 1, mctx->eflags);
      if (IS_WORD_CONTEXT (context))
	return dfa->init_state_word;
      else if (IS_ORDINARY_CONTEXT (context))
	return dfa->init_state;
      else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context))
	return dfa->init_state_begbuf;
      else if (IS_NEWLINE_CONTEXT (context))
	return dfa->init_state_nl;
      else if (IS_BEGBUF_CONTEXT (context))
	{
	  /* It is relatively rare case, then calculate on demand.  */
	  return re_acquire_state_context (err, dfa,
					   dfa->init_state->entrance_nodes,
					   context);
	}
      else
	/* Must not happen?  */
	return dfa->init_state;
    }
  else
    return dfa->init_state;
}

/* Check whether the regular expression match input string INPUT or not,
   and return the index where the matching end.  Return REG_MISSING if
   there is no match, and return REG_ERROR in case of an error.
   FL_LONGEST_MATCH means we want the POSIX longest matching.
   If P_MATCH_FIRST is not NULL, and the match fails, it is set to the
   next place where we may want to try matching.
   Note that the matcher assume that the maching starts from the current
   index of the buffer.  */

static Idx
internal_function
check_matching (re_match_context_t *mctx, bool fl_longest_match,
		Idx *p_match_first)
{
  const re_dfa_t *const dfa = mctx->dfa;
  reg_errcode_t err;
  Idx match = 0;
  Idx match_last = REG_MISSING;
  Idx cur_str_idx = re_string_cur_idx (&mctx->input);
  re_dfastate_t *cur_state;
  bool at_init_state = p_match_first != NULL;
  Idx next_start_idx = cur_str_idx;

  err = REG_NOERROR;
  cur_state = acquire_init_state_context (&err, mctx, cur_str_idx);
  /* An initial state must not be NULL (invalid).  */
  if (BE (cur_state == NULL, 0))
    {
      assert (err == REG_ESPACE);
      return REG_ERROR;
    }

  if (mctx->state_log != NULL)
    {
      mctx->state_log[cur_str_idx] = cur_state;

      /* Check OP_OPEN_SUBEXP in the initial state in case that we use them
	 later.  E.g. Processing back references.  */
      if (BE (dfa->nbackref, 0))
	{
	  at_init_state = false;
	  err = check_subexp_matching_top (mctx, &cur_state->nodes, 0);
	  if (BE (err != REG_NOERROR, 0))
	    return err;

	  if (cur_state->has_backref)
	    {
	      err = transit_state_bkref (mctx, &cur_state->nodes);
	      if (BE (err != REG_NOERROR, 0))
	        return err;
	    }
	}
    }

  /* If the RE accepts NULL string.  */
  if (BE (cur_state->halt, 0))
    {
      if (!cur_state->has_constraint
	  || check_halt_state_context (mctx, cur_state, cur_str_idx))
	{
	  if (!fl_longest_match)
	    return cur_str_idx;
	  else
	    {
	      match_last = cur_str_idx;
	      match = 1;
	    }
	}
    }

  while (!re_string_eoi (&mctx->input))
    {
      re_dfastate_t *old_state = cur_state;
      Idx next_char_idx = re_string_cur_idx (&mctx->input) + 1;

      if (BE (next_char_idx >= mctx->input.bufs_len, 0)
          || (BE (next_char_idx >= mctx->input.valid_len, 0)
              && mctx->input.valid_len < mctx->input.len))
        {
          err = extend_buffers (mctx);
          if (BE (err != REG_NOERROR, 0))
	    {
	      assert (err == REG_ESPACE);
	      return REG_ERROR;
	    }
        }

      cur_state = transit_state (&err, mctx, cur_state);
      if (mctx->state_log != NULL)
	cur_state = merge_state_with_log (&err, mctx, cur_state);

      if (cur_state == NULL)
	{
	  /* Reached the invalid state or an error.  Try to recover a valid
	     state using the state log, if available and if we have not
	     already found a valid (even if not the longest) match.  */
	  if (BE (err != REG_NOERROR, 0))
	    return REG_ERROR;

	  if (mctx->state_log == NULL
	      || (match && !fl_longest_match)
	      || (cur_state = find_recover_state (&err, mctx)) == NULL)
	    break;
	}

      if (BE (at_init_state, 0))
	{
	  if (old_state == cur_state)
	    next_start_idx = next_char_idx;
	  else
	    at_init_state = false;
	}

      if (cur_state->halt)
	{
	  /* Reached a halt state.
	     Check the halt state can satisfy the current context.  */
	  if (!cur_state->has_constraint
	      || check_halt_state_context (mctx, cur_state,
					   re_string_cur_idx (&mctx->input)))
	    {
	      /* We found an appropriate halt state.  */
	      match_last = re_string_cur_idx (&mctx->input);
	      match = 1;

	      /* We found a match, do not modify match_first below.  */
	      p_match_first = NULL;
	      if (!fl_longest_match)
		break;
	    }
	}
    }

  if (p_match_first)
    *p_match_first += next_start_idx;

  return match_last;
}

/* Check NODE match the current context.  */

static bool
internal_function
check_halt_node_context (const re_dfa_t *dfa, Idx node, unsigned int context)
{
  re_token_type_t type = dfa->nodes[node].type;
  unsigned int constraint = dfa->nodes[node].constraint;
  if (type != END_OF_RE)
    return false;
  if (!constraint)
    return true;
  if (NOT_SATISFY_NEXT_CONSTRAINT (constraint, context))
    return false;
  return true;
}

/* Check the halt state STATE match the current context.
   Return 0 if not match, if the node, STATE has, is a halt node and
   match the context, return the node.  */

static Idx
internal_function
check_halt_state_context (const re_match_context_t *mctx,
			  const re_dfastate_t *state, Idx idx)
{
  Idx i;
  unsigned int context;
#ifdef DEBUG
  assert (state->halt);
#endif
  context = re_string_context_at (&mctx->input, idx, mctx->eflags);
  for (i = 0; i < state->nodes.nelem; ++i)
    if (check_halt_node_context (mctx->dfa, state->nodes.elems[i], context))
      return state->nodes.elems[i];
  return 0;
}

/* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA
   corresponding to the DFA).
   Return the destination node, and update EPS_VIA_NODES;
   return REG_MISSING in case of errors.  */

static Idx
internal_function
proceed_next_node (const re_match_context_t *mctx, Idx nregs, regmatch_t *regs,
		   Idx *pidx, Idx node, re_node_set *eps_via_nodes,
		   struct re_fail_stack_t *fs)
{
  const re_dfa_t *const dfa = mctx->dfa;
  Idx i;
  bool ok;
  if (IS_EPSILON_NODE (dfa->nodes[node].type))
    {
      re_node_set *cur_nodes = &mctx->state_log[*pidx]->nodes;
      re_node_set *edests = &dfa->edests[node];
      Idx dest_node;
      ok = re_node_set_insert (eps_via_nodes, node);
      if (BE (! ok, 0))
	return REG_ERROR;
      /* Pick up a valid destination, or return REG_MISSING if none
	 is found.  */
      for (dest_node = REG_MISSING, i = 0; i < edests->nelem; ++i)
	{
	  Idx candidate = edests->elems[i];
	  if (!re_node_set_contains (cur_nodes, candidate))
	    continue;
          if (dest_node == REG_MISSING)
	    dest_node = candidate;

          else
	    {
	      /* In order to avoid infinite loop like "(a*)*", return the second
	         epsilon-transition if the first was already considered.  */
	      if (re_node_set_contains (eps_via_nodes, dest_node))
	        return candidate;

	      /* Otherwise, push the second epsilon-transition on the fail stack.  */
	      else if (fs != NULL
		       && push_fail_stack (fs, *pidx, candidate, nregs, regs,
				           eps_via_nodes))
		return REG_ERROR;

	      /* We know we are going to exit.  */
	      break;
	    }
	}
      return dest_node;
    }
  else
    {
      Idx naccepted = 0;
      re_token_type_t type = dfa->nodes[node].type;

#ifdef RE_ENABLE_I18N
      if (dfa->nodes[node].accept_mb)
	naccepted = check_node_accept_bytes (dfa, node, &mctx->input, *pidx);
      else
#endif /* RE_ENABLE_I18N */
      if (type == OP_BACK_REF)
	{
	  Idx subexp_idx = dfa->nodes[node].opr.idx + 1;
	  naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so;
	  if (fs != NULL)
	    {
	      if (regs[subexp_idx].rm_so == -1 || regs[subexp_idx].rm_eo == -1)
		return REG_MISSING;
	      else if (naccepted)
		{
		  char *buf = (char *) re_string_get_buffer (&mctx->input);
		  if (memcmp (buf + regs[subexp_idx].rm_so, buf + *pidx,
			      naccepted) != 0)
		    return REG_MISSING;
		}
	    }

	  if (naccepted == 0)
	    {
	      Idx dest_node;
	      ok = re_node_set_insert (eps_via_nodes, node);
	      if (BE (! ok, 0))
		return REG_ERROR;
	      dest_node = dfa->edests[node].elems[0];
	      if (re_node_set_contains (&mctx->state_log[*pidx]->nodes,
					dest_node))
		return dest_node;
	    }
	}

      if (naccepted != 0
	  || check_node_accept (mctx, dfa->nodes + node, *pidx))
	{
	  Idx dest_node = dfa->nexts[node];
	  *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted;
	  if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL
		     || !re_node_set_contains (&mctx->state_log[*pidx]->nodes,
					       dest_node)))
	    return REG_MISSING;
	  re_node_set_empty (eps_via_nodes);
	  return dest_node;
	}
    }
  return REG_MISSING;
}

static reg_errcode_t
internal_function
push_fail_stack (struct re_fail_stack_t *fs, Idx str_idx, Idx dest_node,
		 Idx nregs, regmatch_t *regs, re_node_set *eps_via_nodes)
{
  reg_errcode_t err;
  Idx num = fs->num++;
  if (fs->num == fs->alloc)
    {
      struct re_fail_stack_ent_t *new_array;
      new_array = realloc (fs->stack, (sizeof (struct re_fail_stack_ent_t)
				       * fs->alloc * 2));
      if (new_array == NULL)
	return REG_ESPACE;
      fs->alloc *= 2;
      fs->stack = new_array;
    }
  fs->stack[num].idx = str_idx;
  fs->stack[num].node = dest_node;
  fs->stack[num].regs = re_malloc (regmatch_t, nregs);
  if (fs->stack[num].regs == NULL)
    return REG_ESPACE;
  memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs);
  err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes);
  return err;
}

static Idx
internal_function
pop_fail_stack (struct re_fail_stack_t *fs, Idx *pidx, Idx nregs,
		regmatch_t *regs, re_node_set *eps_via_nodes)
{
  Idx num = --fs->num;
  assert (REG_VALID_INDEX (num));
  *pidx = fs->stack[num].idx;
  memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs);
  re_node_set_free (eps_via_nodes);
  re_free (fs->stack[num].regs);
  *eps_via_nodes = fs->stack[num].eps_via_nodes;
  return fs->stack[num].node;
}

/* Set the positions where the subexpressions are starts/ends to registers
   PMATCH.
   Note: We assume that pmatch[0] is already set, and
   pmatch[i].rm_so == pmatch[i].rm_eo == -1 for 0 < i < nmatch.  */

static reg_errcode_t
internal_function
set_regs (const regex_t *preg, const re_match_context_t *mctx, size_t nmatch,
	  regmatch_t *pmatch, bool fl_backtrack)
{
  const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer;
  Idx idx, cur_node;
  re_node_set eps_via_nodes;
  struct re_fail_stack_t *fs;
  struct re_fail_stack_t fs_body = { 0, 2, NULL };
  regmatch_t *prev_idx_match;
  bool prev_idx_match_malloced = false;

#ifdef DEBUG
  assert (nmatch > 1);
  assert (mctx->state_log != NULL);
#endif
  if (fl_backtrack)
    {
      fs = &fs_body;
      fs->stack = re_malloc (struct re_fail_stack_ent_t, fs->alloc);
      if (fs->stack == NULL)
	return REG_ESPACE;
    }
  else
    fs = NULL;

  cur_node = dfa->init_node;
  re_node_set_init_empty (&eps_via_nodes);

  if (__libc_use_alloca (nmatch * sizeof (regmatch_t)))
    prev_idx_match = (regmatch_t *) alloca (nmatch * sizeof (regmatch_t));
  else
    {
      prev_idx_match = re_malloc (regmatch_t, nmatch);
      if (prev_idx_match == NULL)
	{
	  free_fail_stack_return (fs);
	  return REG_ESPACE;
	}
      prev_idx_match_malloced = true;
    }
  memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch);

  for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;)
    {
      update_regs (dfa, pmatch, prev_idx_match, cur_node, idx, nmatch);

      if (idx == pmatch[0].rm_eo && cur_node == mctx->last_node)
	{
	  Idx reg_idx;
	  if (fs)
	    {
	      for (reg_idx = 0; reg_idx < nmatch; ++reg_idx)
		if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1)
		  break;
	      if (reg_idx == nmatch)
		{
		  re_node_set_free (&eps_via_nodes);
		  if (prev_idx_match_malloced)
		    re_free (prev_idx_match);
		  return free_fail_stack_return (fs);
		}
	      cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch,
					 &eps_via_nodes);
	    }
	  else
	    {
	      re_node_set_free (&eps_via_nodes);
	      if (prev_idx_match_malloced)
		re_free (prev_idx_match);
	      return REG_NOERROR;
	    }
	}

      /* Proceed to next node.  */
      cur_node = proceed_next_node (mctx, nmatch, pmatch, &idx, cur_node,
				    &eps_via_nodes, fs);

      if (BE (! REG_VALID_INDEX (cur_node), 0))
	{
	  if (BE (cur_node == REG_ERROR, 0))
	    {
	      re_node_set_free (&eps_via_nodes);
	      if (prev_idx_match_malloced)
		re_free (prev_idx_match);
	      free_fail_stack_return (fs);
	      return REG_ESPACE;
	    }
	  if (fs)
	    cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch,
				       &eps_via_nodes);
	  else
	    {
	      re_node_set_free (&eps_via_nodes);
	      if (prev_idx_match_malloced)
		re_free (prev_idx_match);
	      return REG_NOMATCH;
	    }
	}
    }
  re_node_set_free (&eps_via_nodes);
  if (prev_idx_match_malloced)
    re_free (prev_idx_match);
  return free_fail_stack_return (fs);
}

static reg_errcode_t
internal_function
free_fail_stack_return (struct re_fail_stack_t *fs)
{
  if (fs)
    {
      Idx fs_idx;
      for (fs_idx = 0; fs_idx < fs->num; ++fs_idx)
	{
	  re_node_set_free (&fs->stack[fs_idx].eps_via_nodes);
	  re_free (fs->stack[fs_idx].regs);
	}
      re_free (fs->stack);
    }
  return REG_NOERROR;
}

static void
internal_function
update_regs (const re_dfa_t *dfa, regmatch_t *pmatch,
	     regmatch_t *prev_idx_match, Idx cur_node, Idx cur_idx, Idx nmatch)
{
  int type = dfa->nodes[cur_node].type;
  if (type == OP_OPEN_SUBEXP)
    {
      Idx reg_num = dfa->nodes[cur_node].opr.idx + 1;

      /* We are at the first node of this sub expression.  */
      if (reg_num < nmatch)
	{
	  pmatch[reg_num].rm_so = cur_idx;
	  pmatch[reg_num].rm_eo = -1;
	}
    }
  else if (type == OP_CLOSE_SUBEXP)
    {
      Idx reg_num = dfa->nodes[cur_node].opr.idx + 1;
      if (reg_num < nmatch)
	{
	  /* We are at the last node of this sub expression.  */
	  if (pmatch[reg_num].rm_so < cur_idx)
	    {
	      pmatch[reg_num].rm_eo = cur_idx;
	      /* This is a non-empty match or we are not inside an optional
		 subexpression.  Accept this right away.  */
	      memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch);
	    }
	  else
	    {
	      if (dfa->nodes[cur_node].opt_subexp
		  && prev_idx_match[reg_num].rm_so != -1)
		/* We transited through an empty match for an optional
		   subexpression, like (a?)*, and this is not the subexp's
		   first match.  Copy back the old content of the registers
		   so that matches of an inner subexpression are undone as
		   well, like in ((a?))*.  */
		memcpy (pmatch, prev_idx_match, sizeof (regmatch_t) * nmatch);
	      else
		/* We completed a subexpression, but it may be part of
		   an optional one, so do not update PREV_IDX_MATCH.  */
		pmatch[reg_num].rm_eo = cur_idx;
	    }
	}
    }
}

/* This function checks the STATE_LOG from the SCTX->last_str_idx to 0
   and sift the nodes in each states according to the following rules.
   Updated state_log will be wrote to STATE_LOG.

   Rules: We throw away the Node `a' in the STATE_LOG[STR_IDX] if...
     1. When STR_IDX == MATCH_LAST(the last index in the state_log):
	If `a' isn't the LAST_NODE and `a' can't epsilon transit to
	the LAST_NODE, we throw away the node `a'.
     2. When 0 <= STR_IDX < MATCH_LAST and `a' accepts
	string `s' and transit to `b':
	i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw
	   away the node `a'.
	ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is
	    thrown away, we throw away the node `a'.
     3. When 0 <= STR_IDX < MATCH_LAST and 'a' epsilon transit to 'b':
	i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the
	   node `a'.
	ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is thrown away,
	    we throw away the node `a'.  */

#define STATE_NODE_CONTAINS(state,node) \
  ((state) != NULL && re_node_set_contains (&(state)->nodes, node))

static reg_errcode_t
internal_function
sift_states_backward (const re_match_context_t *mctx, re_sift_context_t *sctx)
{
  reg_errcode_t err;
  int null_cnt = 0;
  Idx str_idx = sctx->last_str_idx;
  re_node_set cur_dest;

#ifdef DEBUG
  assert (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL);
#endif

  /* Build sifted state_log[str_idx].  It has the nodes which can epsilon
     transit to the last_node and the last_node itself.  */
  err = re_node_set_init_1 (&cur_dest, sctx->last_node);
  if (BE (err != REG_NOERROR, 0))
    return err;
  err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest);
  if (BE (err != REG_NOERROR, 0))
    goto free_return;

  /* Then check each states in the state_log.  */
  while (str_idx > 0)
    {
      /* Update counters.  */
      null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0;
      if (null_cnt > mctx->max_mb_elem_len)
	{
	  memset (sctx->sifted_states, '\0',
		  sizeof (re_dfastate_t *) * str_idx);
	  re_node_set_free (&cur_dest);
	  return REG_NOERROR;
	}
      re_node_set_empty (&cur_dest);
      --str_idx;

      if (mctx->state_log[str_idx])
	{
	  err = build_sifted_states (mctx, sctx, str_idx, &cur_dest);
          if (BE (err != REG_NOERROR, 0))
	    goto free_return;
	}

      /* Add all the nodes which satisfy the following conditions:
	 - It can epsilon transit to a node in CUR_DEST.
	 - It is in CUR_SRC.
	 And update state_log.  */
      err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest);
      if (BE (err != REG_NOERROR, 0))
	goto free_return;
    }
  err = REG_NOERROR;
 free_return:
  re_node_set_free (&cur_dest);
  return err;
}

static reg_errcode_t
internal_function
build_sifted_states (const re_match_context_t *mctx, re_sift_context_t *sctx,
		     Idx str_idx, re_node_set *cur_dest)
{
  const re_dfa_t *const dfa = mctx->dfa;
  const re_node_set *cur_src = &mctx->state_log[str_idx]->non_eps_nodes;
  Idx i;

  /* Then build the next sifted state.
     We build the next sifted state on `cur_dest', and update
     `sifted_states[str_idx]' with `cur_dest'.
     Note:
     `cur_dest' is the sifted state from `state_log[str_idx + 1]'.
     `cur_src' points the node_set of the old `state_log[str_idx]'
     (with the epsilon nodes pre-filtered out).  */
  for (i = 0; i < cur_src->nelem; i++)
    {
      Idx prev_node = cur_src->elems[i];
      int naccepted = 0;
      bool ok;

#ifdef DEBUG
      re_token_type_t type = dfa->nodes[prev_node].type;
      assert (!IS_EPSILON_NODE (type));
#endif
#ifdef RE_ENABLE_I18N
      /* If the node may accept `multi byte'.  */
      if (dfa->nodes[prev_node].accept_mb)
	naccepted = sift_states_iter_mb (mctx, sctx, prev_node,
					 str_idx, sctx->last_str_idx);
#endif /* RE_ENABLE_I18N */

      /* We don't check backreferences here.
	 See update_cur_sifted_state().  */
      if (!naccepted
	  && check_node_accept (mctx, dfa->nodes + prev_node, str_idx)
	  && STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1],
				  dfa->nexts[prev_node]))
	naccepted = 1;

      if (naccepted == 0)
	continue;

      if (sctx->limits.nelem)
	{
	  Idx to_idx = str_idx + naccepted;
	  if (check_dst_limits (mctx, &sctx->limits,
				dfa->nexts[prev_node], to_idx,
				prev_node, str_idx))
	    continue;
	}
      ok = re_node_set_insert (cur_dest, prev_node);
      if (BE (! ok, 0))
	return REG_ESPACE;
    }

  return REG_NOERROR;
}

/* Helper functions.  */

static reg_errcode_t
internal_function
clean_state_log_if_needed (re_match_context_t *mctx, Idx next_state_log_idx)
{
  Idx top = mctx->state_log_top;

  if (next_state_log_idx >= mctx->input.bufs_len
      || (next_state_log_idx >= mctx->input.valid_len
	  && mctx->input.valid_len < mctx->input.len))
    {
      reg_errcode_t err;
      err = extend_buffers (mctx);
      if (BE (err != REG_NOERROR, 0))
	return err;
    }

  if (top < next_state_log_idx)
    {
      memset (mctx->state_log + top + 1, '\0',
	      sizeof (re_dfastate_t *) * (next_state_log_idx - top));
      mctx->state_log_top = next_state_log_idx;
    }
  return REG_NOERROR;
}

static reg_errcode_t
internal_function
merge_state_array (const re_dfa_t *dfa, re_dfastate_t **dst,
		   re_dfastate_t **src, Idx num)
{
  Idx st_idx;
  reg_errcode_t err;
  for (st_idx = 0; st_idx < num; ++st_idx)
    {
      if (dst[st_idx] == NULL)
	dst[st_idx] = src[st_idx];
      else if (src[st_idx] != NULL)
	{
	  re_node_set merged_set;
	  err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes,
					&src[st_idx]->nodes);
	  if (BE (err != REG_NOERROR, 0))
	    return err;
	  dst[st_idx] = re_acquire_state (&err, dfa, &merged_set);
	  re_node_set_free (&merged_set);
	  if (BE (err != REG_NOERROR, 0))
	    return err;
	}
    }
  return REG_NOERROR;
}

static reg_errcode_t
internal_function
update_cur_sifted_state (const re_match_context_t *mctx,
			 re_sift_context_t *sctx, Idx str_idx,
			 re_node_set *dest_nodes)
{
  const re_dfa_t *const dfa = mctx->dfa;
  reg_errcode_t err = REG_NOERROR;
  const re_node_set *candidates;
  candidates = ((mctx->state_log[str_idx] == NULL) ? NULL
		: &mctx->state_log[str_idx]->nodes);

  if (dest_nodes->nelem == 0)
    sctx->sifted_states[str_idx] = NULL;
  else
    {
      if (candidates)
	{
	  /* At first, add the nodes which can epsilon transit to a node in
	     DEST_NODE.  */
	  err = add_epsilon_src_nodes (dfa, dest_nodes, candidates);
	  if (BE (err != REG_NOERROR, 0))
	    return err;

	  /* Then, check the limitations in the current sift_context.  */
	  if (sctx->limits.nelem)
	    {
	      err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits,
					 mctx->bkref_ents, str_idx);
	      if (BE (err != REG_NOERROR, 0))
		return err;
	    }
	}

      sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes);
      if (BE (err != REG_NOERROR, 0))
	return err;
    }

  if (candidates && mctx->state_log[str_idx]->has_backref)
    {
      err = sift_states_bkref (mctx, sctx, str_idx, candidates);
      if (BE (err != REG_NOERROR, 0))
	return err;
    }
  return REG_NOERROR;
}

static reg_errcode_t
internal_function
add_epsilon_src_nodes (const re_dfa_t *dfa, re_node_set *dest_nodes,
		       const re_node_set *candidates)
{
  reg_errcode_t err = REG_NOERROR;
  Idx i;

  re_dfastate_t *state = re_acquire_state (&err, dfa, dest_nodes);
  if (BE (err != REG_NOERROR, 0))
    return err;

  if (!state->inveclosure.alloc)
    {
      err = re_node_set_alloc (&state->inveclosure, dest_nodes->nelem);
      if (BE (err != REG_NOERROR, 0))
        return REG_ESPACE;
      for (i = 0; i < dest_nodes->nelem; i++)
        re_node_set_merge (&state->inveclosure,
			   dfa->inveclosures + dest_nodes->elems[i]);
    }
  return re_node_set_add_intersect (dest_nodes, candidates,
				    &state->inveclosure);
}

static reg_errcode_t
internal_function
sub_epsilon_src_nodes (const re_dfa_t *dfa, Idx node, re_node_set *dest_nodes,
		       const re_node_set *candidates)
{
    Idx ecl_idx;
    reg_errcode_t err;
    re_node_set *inv_eclosure = dfa->inveclosures + node;
    re_node_set except_nodes;
    re_node_set_init_empty (&except_nodes);
    for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx)
      {
	Idx cur_node = inv_eclosure->elems[ecl_idx];
	if (cur_node == node)
	  continue;
	if (IS_EPSILON_NODE (dfa->nodes[cur_node].type))
	  {
	    Idx edst1 = dfa->edests[cur_node].elems[0];
	    Idx edst2 = ((dfa->edests[cur_node].nelem > 1)
			 ? dfa->edests[cur_node].elems[1] : REG_MISSING);
	    if ((!re_node_set_contains (inv_eclosure, edst1)
		 && re_node_set_contains (dest_nodes, edst1))
		|| (REG_VALID_NONZERO_INDEX (edst2)
		    && !re_node_set_contains (inv_eclosure, edst2)
		    && re_node_set_contains (dest_nodes, edst2)))
	      {
		err = re_node_set_add_intersect (&except_nodes, candidates,
						 dfa->inveclosures + cur_node);
		if (BE (err != REG_NOERROR, 0))
		  {
		    re_node_set_free (&except_nodes);
		    return err;
		  }
	      }
	  }
      }
    for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx)
      {
	Idx cur_node = inv_eclosure->elems[ecl_idx];
	if (!re_node_set_contains (&except_nodes, cur_node))
	  {
	    Idx idx = re_node_set_contains (dest_nodes, cur_node) - 1;
	    re_node_set_remove_at (dest_nodes, idx);
	  }
      }
    re_node_set_free (&except_nodes);
    return REG_NOERROR;
}

static bool
internal_function
check_dst_limits (const re_match_context_t *mctx, const re_node_set *limits,
		  Idx dst_node, Idx dst_idx, Idx src_node, Idx src_idx)
{
  const re_dfa_t *const dfa = mctx->dfa;
  Idx lim_idx, src_pos, dst_pos;

  Idx dst_bkref_idx = search_cur_bkref_entry (mctx, dst_idx);
  Idx src_bkref_idx = search_cur_bkref_entry (mctx, src_idx);
  for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx)
    {
      Idx subexp_idx;
      struct re_backref_cache_entry *ent;
      ent = mctx->bkref_ents + limits->elems[lim_idx];
      subexp_idx = dfa->nodes[ent->node].opr.idx;

      dst_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx],
					   subexp_idx, dst_node, dst_idx,
					   dst_bkref_idx);
      src_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx],
					   subexp_idx, src_node, src_idx,
					   src_bkref_idx);

      /* In case of:
	 <src> <dst> ( <subexp> )
	 ( <subexp> ) <src> <dst>
	 ( <subexp1> <src> <subexp2> <dst> <subexp3> )  */
      if (src_pos == dst_pos)
	continue; /* This is unrelated limitation.  */
      else
	return true;
    }
  return false;
}

static int
internal_function
check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, int boundaries,
			     Idx subexp_idx, Idx from_node, Idx bkref_idx)
{
  const re_dfa_t *const dfa = mctx->dfa;
  const re_node_set *eclosures = dfa->eclosures + from_node;
  Idx node_idx;

  /* Else, we are on the boundary: examine the nodes on the epsilon
     closure.  */
  for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx)
    {
      Idx node = eclosures->elems[node_idx];
      switch (dfa->nodes[node].type)
	{
	case OP_BACK_REF:
	  if (bkref_idx != REG_MISSING)
	    {
	      struct re_backref_cache_entry *ent = mctx->bkref_ents + bkref_idx;
	      do
	        {
		  Idx dst;
		  int cpos;

		  if (ent->node != node)
		    continue;

		  if (subexp_idx < BITSET_WORD_BITS
		      && !(ent->eps_reachable_subexps_map
			   & ((bitset_word_t) 1 << subexp_idx)))
		    continue;

		  /* Recurse trying to reach the OP_OPEN_SUBEXP and
		     OP_CLOSE_SUBEXP cases below.  But, if the
		     destination node is the same node as the source
		     node, don't recurse because it would cause an
		     infinite loop: a regex that exhibits this behavior
		     is ()\1*\1*  */
		  dst = dfa->edests[node].elems[0];
		  if (dst == from_node)
		    {
		      if (boundaries & 1)
		        return -1;
		      else /* if (boundaries & 2) */
		        return 0;
		    }

		  cpos =
		    check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx,
						 dst, bkref_idx);
		  if (cpos == -1 /* && (boundaries & 1) */)
		    return -1;
		  if (cpos == 0 && (boundaries & 2))
		    return 0;

		  if (subexp_idx < BITSET_WORD_BITS)
		    ent->eps_reachable_subexps_map
		      &= ~((bitset_word_t) 1 << subexp_idx);
	        }
	      while (ent++->more);
	    }
	  break;

	case OP_OPEN_SUBEXP:
	  if ((boundaries & 1) && subexp_idx == dfa->nodes[node].opr.idx)
	    return -1;
	  break;

	case OP_CLOSE_SUBEXP:
	  if ((boundaries & 2) && subexp_idx == dfa->nodes[node].opr.idx)
	    return 0;
	  break;

	default:
	    break;
	}
    }

  return (boundaries & 2) ? 1 : 0;
}

static int
internal_function
check_dst_limits_calc_pos (const re_match_context_t *mctx, Idx limit,
			   Idx subexp_idx, Idx from_node, Idx str_idx,
			   Idx bkref_idx)
{
  struct re_backref_cache_entry *lim = mctx->bkref_ents + limit;
  int boundaries;

  /* If we are outside the range of the subexpression, return -1 or 1.  */
  if (str_idx < lim->subexp_from)
    return -1;

  if (lim->subexp_to < str_idx)
    return 1;

  /* If we are within the subexpression, return 0.  */
  boundaries = (str_idx == lim->subexp_from);
  boundaries |= (str_idx == lim->subexp_to) << 1;
  if (boundaries == 0)
    return 0;

  /* Else, examine epsilon closure.  */
  return check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx,
				      from_node, bkref_idx);
}

/* Check the limitations of sub expressions LIMITS, and remove the nodes
   which are against limitations from DEST_NODES. */

static reg_errcode_t
internal_function
check_subexp_limits (const re_dfa_t *dfa, re_node_set *dest_nodes,
		     const re_node_set *candidates, re_node_set *limits,
		     struct re_backref_cache_entry *bkref_ents, Idx str_idx)
{
  reg_errcode_t err;
  Idx node_idx, lim_idx;

  for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx)
    {
      Idx subexp_idx;
      struct re_backref_cache_entry *ent;
      ent = bkref_ents + limits->elems[lim_idx];

      if (str_idx <= ent->subexp_from || ent->str_idx < str_idx)
	continue; /* This is unrelated limitation.  */

      subexp_idx = dfa->nodes[ent->node].opr.idx;
      if (ent->subexp_to == str_idx)
	{
	  Idx ops_node = REG_MISSING;
	  Idx cls_node = REG_MISSING;
	  for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
	    {
	      Idx node = dest_nodes->elems[node_idx];
	      re_token_type_t type = dfa->nodes[node].type;
	      if (type == OP_OPEN_SUBEXP
		  && subexp_idx == dfa->nodes[node].opr.idx)
		ops_node = node;
	      else if (type == OP_CLOSE_SUBEXP
		       && subexp_idx == dfa->nodes[node].opr.idx)
		cls_node = node;
	    }

	  /* Check the limitation of the open subexpression.  */
	  /* Note that (ent->subexp_to = str_idx != ent->subexp_from).  */
	  if (REG_VALID_INDEX (ops_node))
	    {
	      err = sub_epsilon_src_nodes (dfa, ops_node, dest_nodes,
					   candidates);
	      if (BE (err != REG_NOERROR, 0))
		return err;
	    }

	  /* Check the limitation of the close subexpression.  */
	  if (REG_VALID_INDEX (cls_node))
	    for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
	      {
		Idx node = dest_nodes->elems[node_idx];
		if (!re_node_set_contains (dfa->inveclosures + node,
					   cls_node)
		    && !re_node_set_contains (dfa->eclosures + node,
					      cls_node))
		  {
		    /* It is against this limitation.
		       Remove it form the current sifted state.  */
		    err = sub_epsilon_src_nodes (dfa, node, dest_nodes,
						 candidates);
		    if (BE (err != REG_NOERROR, 0))
		      return err;
		    --node_idx;
		  }
	      }
	}
      else /* (ent->subexp_to != str_idx)  */
	{
	  for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx)
	    {
	      Idx node = dest_nodes->elems[node_idx];
	      re_token_type_t type = dfa->nodes[node].type;
	      if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP)
		{
		  if (subexp_idx != dfa->nodes[node].opr.idx)
		    continue;
		  /* It is against this limitation.
		     Remove it form the current sifted state.  */
		  err = sub_epsilon_src_nodes (dfa, node, dest_nodes,
					       candidates);
		  if (BE (err != REG_NOERROR, 0))
		    return err;
		}
	    }
	}
    }
  return REG_NOERROR;
}

static reg_errcode_t
internal_function
sift_states_bkref (const re_match_context_t *mctx, re_sift_context_t *sctx,
		   Idx str_idx, const re_node_set *candidates)
{
  const re_dfa_t *const dfa = mctx->dfa;
  reg_errcode_t err;
  Idx node_idx, node;
  re_sift_context_t local_sctx;
  Idx first_idx = search_cur_bkref_entry (mctx, str_idx);

  if (first_idx == REG_MISSING)
    return REG_NOERROR;

  local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized.  */

  for (node_idx = 0; node_idx < candidates->nelem; ++node_idx)
    {
      Idx enabled_idx;
      re_token_type_t type;
      struct re_backref_cache_entry *entry;
      node = candidates->elems[node_idx];
      type = dfa->nodes[node].type;
      /* Avoid infinite loop for the REs like "()\1+".  */
      if (node == sctx->last_node && str_idx == sctx->last_str_idx)
	continue;
      if (type != OP_BACK_REF)
	continue;

      entry = mctx->bkref_ents + first_idx;
      enabled_idx = first_idx;
      do
	{
	  Idx subexp_len;
	  Idx to_idx;
	  Idx dst_node;
	  bool ok;
	  re_dfastate_t *cur_state;

	  if (entry->node != node)
	    continue;
	  subexp_len = entry->subexp_to - entry->subexp_from;
	  to_idx = str_idx + subexp_len;
	  dst_node = (subexp_len ? dfa->nexts[node]
		      : dfa->edests[node].elems[0]);

	  if (to_idx > sctx->last_str_idx
	      || sctx->sifted_states[to_idx] == NULL
	      || !STATE_NODE_CONTAINS (sctx->sifted_states[to_idx], dst_node)
	      || check_dst_limits (mctx, &sctx->limits, node,
				   str_idx, dst_node, to_idx))
	    continue;

	  if (local_sctx.sifted_states == NULL)
	    {
	      local_sctx = *sctx;
	      err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits);
	      if (BE (err != REG_NOERROR, 0))
		goto free_return;
	    }
	  local_sctx.last_node = node;
	  local_sctx.last_str_idx = str_idx;
	  ok = re_node_set_insert (&local_sctx.limits, enabled_idx);
	  if (BE (! ok, 0))
	    {
	      err = REG_ESPACE;
	      goto free_return;
	    }
	  cur_state = local_sctx.sifted_states[str_idx];
	  err = sift_states_backward (mctx, &local_sctx);
	  if (BE (err != REG_NOERROR, 0))
	    goto free_return;
	  if (sctx->limited_states != NULL)
	    {
	      err = merge_state_array (dfa, sctx->limited_states,
				       local_sctx.sifted_states,
				       str_idx + 1);
	      if (BE (err != REG_NOERROR, 0))
		goto free_return;
	    }
	  local_sctx.sifted_states[str_idx] = cur_state;
	  re_node_set_remove (&local_sctx.limits, enabled_idx);

	  /* mctx->bkref_ents may have changed, reload the pointer.  */
          entry = mctx->bkref_ents + enabled_idx;
	}
      while (enabled_idx++, entry++->more);
    }
  err = REG_NOERROR;
 free_return:
  if (local_sctx.sifted_states != NULL)
    {
      re_node_set_free (&local_sctx.limits);
    }

  return err;
}


#ifdef RE_ENABLE_I18N
static int
internal_function
sift_states_iter_mb (const re_match_context_t *mctx, re_sift_context_t *sctx,
		     Idx node_idx, Idx str_idx, Idx max_str_idx)
{
  const re_dfa_t *const dfa = mctx->dfa;
  int naccepted;
  /* Check the node can accept `multi byte'.  */
  naccepted = check_node_accept_bytes (dfa, node_idx, &mctx->input, str_idx);
  if (naccepted > 0 && str_idx + naccepted <= max_str_idx &&
      !STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted],
			    dfa->nexts[node_idx]))
    /* The node can't accept the `multi byte', or the
       destination was already thrown away, then the node
       could't accept the current input `multi byte'.   */
    naccepted = 0;
  /* Otherwise, it is sure that the node could accept
     `naccepted' bytes input.  */
  return naccepted;
}
#endif /* RE_ENABLE_I18N */


/* Functions for state transition.  */

/* Return the next state to which the current state STATE will transit by
   accepting the current input byte, and update STATE_LOG if necessary.
   If STATE can accept a multibyte char/collating element/back reference
   update the destination of STATE_LOG.  */

static re_dfastate_t *
internal_function
transit_state (reg_errcode_t *err, re_match_context_t *mctx,
	       re_dfastate_t *state)
{
  re_dfastate_t **trtable;
  unsigned char ch;

#ifdef RE_ENABLE_I18N
  /* If the current state can accept multibyte.  */
  if (BE (state->accept_mb, 0))
    {
      *err = transit_state_mb (mctx, state);
      if (BE (*err != REG_NOERROR, 0))
	return NULL;
    }
#endif /* RE_ENABLE_I18N */

  /* Then decide the next state with the single byte.  */
#if 0
  if (0)
    /* don't use transition table  */
    return transit_state_sb (err, mctx, state);
#endif

  /* Use transition table  */
  ch = re_string_fetch_byte (&mctx->input);
  for (;;)
    {
      trtable = state->trtable;
      if (BE (trtable != NULL, 1))
	return trtable[ch];

      trtable = state->word_trtable;
      if (BE (trtable != NULL, 1))
        {
	  unsigned int context;
	  context
	    = re_string_context_at (&mctx->input,
				    re_string_cur_idx (&mctx->input) - 1,
				    mctx->eflags);
	  if (IS_WORD_CONTEXT (context))
	    return trtable[ch + SBC_MAX];
	  else
	    return trtable[ch];
	}

      if (!build_trtable (mctx->dfa, state))
	{
	  *err = REG_ESPACE;
	  return NULL;
	}

      /* Retry, we now have a transition table.  */
    }
}

/* Update the state_log if we need */
re_dfastate_t *
internal_function
merge_state_with_log (reg_errcode_t *err, re_match_context_t *mctx,
		      re_dfastate_t *next_state)
{
  const re_dfa_t *const dfa = mctx->dfa;
  Idx cur_idx = re_string_cur_idx (&mctx->input);

  if (cur_idx > mctx->state_log_top)
    {
      mctx->state_log[cur_idx] = next_state;
      mctx->state_log_top = cur_idx;
    }
  else if (mctx->state_log[cur_idx] == 0)
    {
      mctx->state_log[cur_idx] = next_state;
    }
  else
    {
      re_dfastate_t *pstate;
      unsigned int context;
      re_node_set next_nodes, *log_nodes, *table_nodes = NULL;
      /* If (state_log[cur_idx] != 0), it implies that cur_idx is
         the destination of a multibyte char/collating element/
         back reference.  Then the next state is the union set of
         these destinations and the results of the transition table.  */
      pstate = mctx->state_log[cur_idx];
      log_nodes = pstate->entrance_nodes;
      if (next_state != NULL)
        {
          table_nodes = next_state->entrance_nodes;
          *err = re_node_set_init_union (&next_nodes, table_nodes,
					     log_nodes);
          if (BE (*err != REG_NOERROR, 0))
	    return NULL;
        }
      else
        next_nodes = *log_nodes;
      /* Note: We already add the nodes of the initial state,
	 then we don't need to add them here.  */

      context = re_string_context_at (&mctx->input,
				      re_string_cur_idx (&mctx->input) - 1,
				      mctx->eflags);
      next_state = mctx->state_log[cur_idx]
        = re_acquire_state_context (err, dfa, &next_nodes, context);
      /* We don't need to check errors here, since the return value of
         this function is next_state and ERR is already set.  */

      if (table_nodes != NULL)
        re_node_set_free (&next_nodes);
    }

  if (BE (dfa->nbackref, 0) && next_state != NULL)
    {
      /* Check OP_OPEN_SUBEXP in the current state in case that we use them
	 later.  We must check them here, since the back references in the
	 next state might use them.  */
      *err = check_subexp_matching_top (mctx, &next_state->nodes,
					cur_idx);
      if (BE (*err != REG_NOERROR, 0))
	return NULL;

      /* If the next state has back references.  */
      if (next_state->has_backref)
	{
	  *err = transit_state_bkref (mctx, &next_state->nodes);
	  if (BE (*err != REG_NOERROR, 0))
	    return NULL;
	  next_state = mctx->state_log[cur_idx];
	}
    }

  return next_state;
}

/* Skip bytes in the input that correspond to part of a
   multi-byte match, then look in the log for a state
   from which to restart matching.  */
static re_dfastate_t *
internal_function
find_recover_state (reg_errcode_t *err, re_match_context_t *mctx)
{
  re_dfastate_t *cur_state;
  do
    {
      Idx max = mctx->state_log_top;
      Idx cur_str_idx = re_string_cur_idx (&mctx->input);

      do
	{
          if (++cur_str_idx > max)
            return NULL;
          re_string_skip_bytes (&mctx->input, 1);
	}
      while (mctx->state_log[cur_str_idx] == NULL);

      cur_state = merge_state_with_log (err, mctx, NULL);
    }
  while (*err == REG_NOERROR && cur_state == NULL);
  return cur_state;
}

/* Helper functions for transit_state.  */

/* From the node set CUR_NODES, pick up the nodes whose types are
   OP_OPEN_SUBEXP and which have corresponding back references in the regular
   expression. And register them to use them later for evaluating the
   correspoding back references.  */

static reg_errcode_t
internal_function
check_subexp_matching_top (re_match_context_t *mctx, re_node_set *cur_nodes,
			   Idx str_idx)
{
  const re_dfa_t *const dfa = mctx->dfa;
  Idx node_idx;
  reg_errcode_t err;

  /* TODO: This isn't efficient.
	   Because there might be more than one nodes whose types are
	   OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all
	   nodes.
	   E.g. RE: (a){2}  */
  for (node_idx = 0; node_idx < cur_nodes->nelem; ++node_idx)
    {
      Idx node = cur_nodes->elems[node_idx];
      if (dfa->nodes[node].type == OP_OPEN_SUBEXP
	  && dfa->nodes[node].opr.idx < BITSET_WORD_BITS
	  && (dfa->used_bkref_map
	      & ((bitset_word_t) 1 << dfa->nodes[node].opr.idx)))
	{
	  err = match_ctx_add_subtop (mctx, node, str_idx);
	  if (BE (err != REG_NOERROR, 0))
	    return err;
	}
    }
  return REG_NOERROR;
}

#if 0
/* Return the next state to which the current state STATE will transit by
   accepting the current input byte.  */

static re_dfastate_t *
transit_state_sb (reg_errcode_t *err, re_match_context_t *mctx,
		  re_dfastate_t *state)
{
  const re_dfa_t *const dfa = mctx->dfa;
  re_node_set next_nodes;
  re_dfastate_t *next_state;
  Idx node_cnt, cur_str_idx = re_string_cur_idx (&mctx->input);
  unsigned int context;

  *err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1);
  if (BE (*err != REG_NOERROR, 0))
    return NULL;
  for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt)
    {
      Idx cur_node = state->nodes.elems[node_cnt];
      if (check_node_accept (mctx, dfa->nodes + cur_node, cur_str_idx))
	{
	  *err = re_node_set_merge (&next_nodes,
				    dfa->eclosures + dfa->nexts[cur_node]);
	  if (BE (*err != REG_NOERROR, 0))
	    {
	      re_node_set_free (&next_nodes);
	      return NULL;
	    }
	}
    }
  context = re_string_context_at (&mctx->input, cur_str_idx, mctx->eflags);
  next_state = re_acquire_state_context (err, dfa, &next_nodes, context);
  /* We don't need to check errors here, since the return value of
     this function is next_state and ERR is already set.  */

  re_node_set_free (&next_nodes);
  re_string_skip_bytes (&mctx->input, 1);
  return next_state;
}
#endif

#ifdef RE_ENABLE_I18N
static reg_errcode_t
internal_function
transit_state_mb (re_match_context_t *mctx, re_dfastate_t *pstate)
{
  const re_dfa_t *const dfa = mctx->dfa;
  reg_errcode_t err;
  Idx i;

  for (i = 0; i < pstate->nodes.nelem; ++i)
    {
      re_node_set dest_nodes, *new_nodes;
      Idx cur_node_idx = pstate->nodes.elems[i];
      int naccepted;
      Idx dest_idx;
      unsigned int context;
      re_dfastate_t *dest_state;

      if (!dfa->nodes[cur_node_idx].accept_mb)
        continue;

      if (dfa->nodes[cur_node_idx].constraint)
	{
	  context = re_string_context_at (&mctx->input,
					  re_string_cur_idx (&mctx->input),
					  mctx->eflags);
	  if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint,
					   context))
	    continue;
	}

      /* How many bytes the node can accept?  */
      naccepted = check_node_accept_bytes (dfa, cur_node_idx, &mctx->input,
					   re_string_cur_idx (&mctx->input));
      if (naccepted == 0)
	continue;

      /* The node can accepts `naccepted' bytes.  */
      dest_idx = re_string_cur_idx (&mctx->input) + naccepted;
      mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted
			       : mctx->max_mb_elem_len);
      err = clean_state_log_if_needed (mctx, dest_idx);
      if (BE (err != REG_NOERROR, 0))
	return err;
#ifdef DEBUG
      assert (dfa->nexts[cur_node_idx] != REG_MISSING);
#endif
      new_nodes = dfa->eclosures + dfa->nexts[cur_node_idx];

      dest_state = mctx->state_log[dest_idx];
      if (dest_state == NULL)
	dest_nodes = *new_nodes;
      else
	{
	  err = re_node_set_init_union (&dest_nodes,
					dest_state->entrance_nodes, new_nodes);
	  if (BE (err != REG_NOERROR, 0))
	    return err;
	}
      context = re_string_context_at (&mctx->input, dest_idx - 1,
				      mctx->eflags);
      mctx->state_log[dest_idx]
	= re_acquire_state_context (&err, dfa, &dest_nodes, context);
      if (dest_state != NULL)
	re_node_set_free (&dest_nodes);
      if (BE (mctx->state_log[dest_idx] == NULL && err != REG_NOERROR, 0))
	return err;
    }
  return REG_NOERROR;
}
#endif /* RE_ENABLE_I18N */

static reg_errcode_t
internal_function
transit_state_bkref (re_match_context_t *mctx, const re_node_set *nodes)
{
  const re_dfa_t *const dfa = mctx->dfa;
  reg_errcode_t err;
  Idx i;
  Idx cur_str_idx = re_string_cur_idx (&mctx->input);

  for (i = 0; i < nodes->nelem; ++i)
    {
      Idx dest_str_idx, prev_nelem, bkc_idx;
      Idx node_idx = nodes->elems[i];
      unsigned int context;
      const re_token_t *node = dfa->nodes + node_idx;
      re_node_set *new_dest_nodes;

      /* Check whether `node' is a backreference or not.  */
      if (node->type != OP_BACK_REF)
	continue;

      if (node->constraint)
	{
	  context = re_string_context_at (&mctx->input, cur_str_idx,
					  mctx->eflags);
	  if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context))
	    continue;
	}

      /* `node' is a backreference.
	 Check the substring which the substring matched.  */
      bkc_idx = mctx->nbkref_ents;
      err = get_subexp (mctx, node_idx, cur_str_idx);
      if (BE (err != REG_NOERROR, 0))
	goto free_return;

      /* And add the epsilon closures (which is `new_dest_nodes') of
	 the backreference to appropriate state_log.  */
#ifdef DEBUG
      assert (dfa->nexts[node_idx] != REG_MISSING);
#endif
      for (; bkc_idx < mctx->nbkref_ents; ++bkc_idx)
	{
	  Idx subexp_len;
	  re_dfastate_t *dest_state;
	  struct re_backref_cache_entry *bkref_ent;
	  bkref_ent = mctx->bkref_ents + bkc_idx;
	  if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx)
	    continue;
	  subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from;
	  new_dest_nodes = (subexp_len == 0
			    ? dfa->eclosures + dfa->edests[node_idx].elems[0]
			    : dfa->eclosures + dfa->nexts[node_idx]);
	  dest_str_idx = (cur_str_idx + bkref_ent->subexp_to
			  - bkref_ent->subexp_from);
	  context = re_string_context_at (&mctx->input, dest_str_idx - 1,
					  mctx->eflags);
	  dest_state = mctx->state_log[dest_str_idx];
	  prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0
			: mctx->state_log[cur_str_idx]->nodes.nelem);
	  /* Add `new_dest_node' to state_log.  */
	  if (dest_state == NULL)
	    {
	      mctx->state_log[dest_str_idx]
		= re_acquire_state_context (&err, dfa, new_dest_nodes,
					    context);
	      if (BE (mctx->state_log[dest_str_idx] == NULL
		      && err != REG_NOERROR, 0))
		goto free_return;
	    }
	  else
	    {
	      re_node_set dest_nodes;
	      err = re_node_set_init_union (&dest_nodes,
					    dest_state->entrance_nodes,
					    new_dest_nodes);
	      if (BE (err != REG_NOERROR, 0))
		{
		  re_node_set_free (&dest_nodes);
		  goto free_return;
		}
	      mctx->state_log[dest_str_idx]
		= re_acquire_state_context (&err, dfa, &dest_nodes, context);
	      re_node_set_free (&dest_nodes);
	      if (BE (mctx->state_log[dest_str_idx] == NULL
		      && err != REG_NOERROR, 0))
		goto free_return;
	    }
	  /* We need to check recursively if the backreference can epsilon
	     transit.  */
	  if (subexp_len == 0
	      && mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem)
	    {
	      err = check_subexp_matching_top (mctx, new_dest_nodes,
					       cur_str_idx);
	      if (BE (err != REG_NOERROR, 0))
		goto free_return;
	      err = transit_state_bkref (mctx, new_dest_nodes);
	      if (BE (err != REG_NOERROR, 0))
		goto free_return;
	    }
	}
    }
  err = REG_NOERROR;
 free_return:
  return err;
}

/* Enumerate all the candidates which the backreference BKREF_NODE can match
   at BKREF_STR_IDX, and register them by match_ctx_add_entry().
   Note that we might collect inappropriate candidates here.
   However, the cost of checking them strictly here is too high, then we
   delay these checking for prune_impossible_nodes().  */

static reg_errcode_t
internal_function
get_subexp (re_match_context_t *mctx, Idx bkref_node, Idx bkref_str_idx)
{
  const re_dfa_t *const dfa = mctx->dfa;
  Idx subexp_num, sub_top_idx;
  const char *buf = (const char *) re_string_get_buffer (&mctx->input);
  /* Return if we have already checked BKREF_NODE at BKREF_STR_IDX.  */
  Idx cache_idx = search_cur_bkref_entry (mctx, bkref_str_idx);
  if (cache_idx != REG_MISSING)
    {
      const struct re_backref_cache_entry *entry
	= mctx->bkref_ents + cache_idx;
      do
        if (entry->node == bkref_node)
	  return REG_NOERROR; /* We already checked it.  */
      while (entry++->more);
    }

  subexp_num = dfa->nodes[bkref_node].opr.idx;

  /* For each sub expression  */
  for (sub_top_idx = 0; sub_top_idx < mctx->nsub_tops; ++sub_top_idx)
    {
      reg_errcode_t err;
      re_sub_match_top_t *sub_top = mctx->sub_tops[sub_top_idx];
      re_sub_match_last_t *sub_last;
      Idx sub_last_idx, sl_str, bkref_str_off;

      if (dfa->nodes[sub_top->node].opr.idx != subexp_num)
	continue; /* It isn't related.  */

      sl_str = sub_top->str_idx;
      bkref_str_off = bkref_str_idx;
      /* At first, check the last node of sub expressions we already
	 evaluated.  */
      for (sub_last_idx = 0; sub_last_idx < sub_top->nlasts; ++sub_last_idx)
	{
	  regoff_t sl_str_diff;
	  sub_last = sub_top->lasts[sub_last_idx];
	  sl_str_diff = sub_last->str_idx - sl_str;
	  /* The matched string by the sub expression match with the substring
	     at the back reference?  */
	  if (sl_str_diff > 0)
	    {
	      if (BE (bkref_str_off + sl_str_diff > mctx->input.valid_len, 0))
		{
		  /* Not enough chars for a successful match.  */
		  if (bkref_str_off + sl_str_diff > mctx->input.len)
		    break;

		  err = clean_state_log_if_needed (mctx,
						   bkref_str_off
						   + sl_str_diff);
		  if (BE (err != REG_NOERROR, 0))
		    return err;
		  buf = (const char *) re_string_get_buffer (&mctx->input);
		}
	      if (memcmp (buf + bkref_str_off, buf + sl_str, sl_str_diff) != 0)
		/* We don't need to search this sub expression any more.  */
		break;
	    }
	  bkref_str_off += sl_str_diff;
	  sl_str += sl_str_diff;
	  err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node,
				bkref_str_idx);

	  /* Reload buf, since the preceding call might have reallocated
	     the buffer.  */
	  buf = (const char *) re_string_get_buffer (&mctx->input);

	  if (err == REG_NOMATCH)
	    continue;
	  if (BE (err != REG_NOERROR, 0))
	    return err;
	}

      if (sub_last_idx < sub_top->nlasts)
	continue;
      if (sub_last_idx > 0)
	++sl_str;
      /* Then, search for the other last nodes of the sub expression.  */
      for (; sl_str <= bkref_str_idx; ++sl_str)
	{
	  Idx cls_node;
	  regoff_t sl_str_off;
	  const re_node_set *nodes;
	  sl_str_off = sl_str - sub_top->str_idx;
	  /* The matched string by the sub expression match with the substring
	     at the back reference?  */
	  if (sl_str_off > 0)
	    {
	      if (BE (bkref_str_off >= mctx->input.valid_len, 0))
		{
		  /* If we are at the end of the input, we cannot match.  */
		  if (bkref_str_off >= mctx->input.len)
		    break;

		  err = extend_buffers (mctx);
		  if (BE (err != REG_NOERROR, 0))
		    return err;

		  buf = (const char *) re_string_get_buffer (&mctx->input);
		}
	      if (buf [bkref_str_off++] != buf[sl_str - 1])
		break; /* We don't need to search this sub expression
			  any more.  */
	    }
	  if (mctx->state_log[sl_str] == NULL)
	    continue;
	  /* Does this state have a ')' of the sub expression?  */
	  nodes = &mctx->state_log[sl_str]->nodes;
	  cls_node = find_subexp_node (dfa, nodes, subexp_num,
				       OP_CLOSE_SUBEXP);
	  if (cls_node == REG_MISSING)
	    continue; /* No.  */
	  if (sub_top->path == NULL)
	    {
	      sub_top->path = calloc (sizeof (state_array_t),
				      sl_str - sub_top->str_idx + 1);
	      if (sub_top->path == NULL)
		return REG_ESPACE;
	    }
	  /* Can the OP_OPEN_SUBEXP node arrive the OP_CLOSE_SUBEXP node
	     in the current context?  */
	  err = check_arrival (mctx, sub_top->path, sub_top->node,
			       sub_top->str_idx, cls_node, sl_str,
			       OP_CLOSE_SUBEXP);
	  if (err == REG_NOMATCH)
	      continue;
	  if (BE (err != REG_NOERROR, 0))
	      return err;
	  sub_last = match_ctx_add_sublast (sub_top, cls_node, sl_str);
	  if (BE (sub_last == NULL, 0))
	    return REG_ESPACE;
	  err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node,
				bkref_str_idx);
	  if (err == REG_NOMATCH)
	    continue;
	}
    }
  return REG_NOERROR;
}

/* Helper functions for get_subexp().  */

/* Check SUB_LAST can arrive to the back reference BKREF_NODE at BKREF_STR.
   If it can arrive, register the sub expression expressed with SUB_TOP
   and SUB_LAST.  */

static reg_errcode_t
internal_function
get_subexp_sub (re_match_context_t *mctx, const re_sub_match_top_t *sub_top,
		re_sub_match_last_t *sub_last, Idx bkref_node, Idx bkref_str)
{
  reg_errcode_t err;
  Idx to_idx;
  /* Can the subexpression arrive the back reference?  */
  err = check_arrival (mctx, &sub_last->path, sub_last->node,
		       sub_last->str_idx, bkref_node, bkref_str,
		       OP_OPEN_SUBEXP);
  if (err != REG_NOERROR)
    return err;
  err = match_ctx_add_entry (mctx, bkref_node, bkref_str, sub_top->str_idx,
			     sub_last->str_idx);
  if (BE (err != REG_NOERROR, 0))
    return err;
  to_idx = bkref_str + sub_last->str_idx - sub_top->str_idx;
  return clean_state_log_if_needed (mctx, to_idx);
}

/* Find the first node which is '(' or ')' and whose index is SUBEXP_IDX.
   Search '(' if FL_OPEN, or search ')' otherwise.
   TODO: This function isn't efficient...
	 Because there might be more than one nodes whose types are
	 OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all
	 nodes.
	 E.g. RE: (a){2}  */

static Idx
internal_function
find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes,
		  Idx subexp_idx, int type)
{
  Idx cls_idx;
  for (cls_idx = 0; cls_idx < nodes->nelem; ++cls_idx)
    {
      Idx cls_node = nodes->elems[cls_idx];
      const re_token_t *node = dfa->nodes + cls_node;
      if (node->type == type
	  && node->opr.idx == subexp_idx)
	return cls_node;
    }
  return REG_MISSING;
}

/* Check whether the node TOP_NODE at TOP_STR can arrive to the node
   LAST_NODE at LAST_STR.  We record the path onto PATH since it will be
   heavily reused.
   Return REG_NOERROR if it can arrive, or REG_NOMATCH otherwise.  */

static reg_errcode_t
internal_function
check_arrival (re_match_context_t *mctx, state_array_t *path, Idx top_node,
	       Idx top_str, Idx last_node, Idx last_str, int type)
{
  const re_dfa_t *const dfa = mctx->dfa;
  reg_errcode_t err = REG_NOERROR;
  Idx subexp_num, backup_cur_idx, str_idx, null_cnt;
  re_dfastate_t *cur_state = NULL;
  re_node_set *cur_nodes, next_nodes;
  re_dfastate_t **backup_state_log;
  unsigned int context;

  subexp_num = dfa->nodes[top_node].opr.idx;
  /* Extend the buffer if we need.  */
  if (BE (path->alloc < last_str + mctx->max_mb_elem_len + 1, 0))
    {
      re_dfastate_t **new_array;
      Idx old_alloc = path->alloc;
      Idx new_alloc = old_alloc + last_str + mctx->max_mb_elem_len + 1;
      if (BE (new_alloc < old_alloc, 0)
	  || BE (SIZE_MAX / sizeof (re_dfastate_t *) < new_alloc, 0))
	return REG_ESPACE;
      new_array = re_realloc (path->array, re_dfastate_t *, new_alloc);
      if (BE (new_array == NULL, 0))
	return REG_ESPACE;
      path->array = new_array;
      path->alloc = new_alloc;
      memset (new_array + old_alloc, '\0',
	      sizeof (re_dfastate_t *) * (path->alloc - old_alloc));
    }

  str_idx = path->next_idx ? path->next_idx : top_str;

  /* Temporary modify MCTX.  */
  backup_state_log = mctx->state_log;
  backup_cur_idx = mctx->input.cur_idx;
  mctx->state_log = path->array;
  mctx->input.cur_idx = str_idx;

  /* Setup initial node set.  */
  context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags);
  if (str_idx == top_str)
    {
      err = re_node_set_init_1 (&next_nodes, top_node);
      if (BE (err != REG_NOERROR, 0))
	return err;
      err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type);
      if (BE (err != REG_NOERROR, 0))
	{
	  re_node_set_free (&next_nodes);
	  return err;
	}
    }
  else
    {
      cur_state = mctx->state_log[str_idx];
      if (cur_state && cur_state->has_backref)
	{
	  err = re_node_set_init_copy (&next_nodes, &cur_state->nodes);
	  if (BE (err != REG_NOERROR, 0))
	    return err;
	}
      else
	re_node_set_init_empty (&next_nodes);
    }
  if (str_idx == top_str || (cur_state && cur_state->has_backref))
    {
      if (next_nodes.nelem)
	{
	  err = expand_bkref_cache (mctx, &next_nodes, str_idx,
				    subexp_num, type);
	  if (BE (err != REG_NOERROR, 0))
	    {
	      re_node_set_free (&next_nodes);
	      return err;
	    }
	}
      cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context);
      if (BE (cur_state == NULL && err != REG_NOERROR, 0))
	{
	  re_node_set_free (&next_nodes);
	  return err;
	}
      mctx->state_log[str_idx] = cur_state;
    }

  for (null_cnt = 0; str_idx < last_str && null_cnt <= mctx->max_mb_elem_len;)
    {
      re_node_set_empty (&next_nodes);
      if (mctx->state_log[str_idx + 1])
	{
	  err = re_node_set_merge (&next_nodes,
				   &mctx->state_log[str_idx + 1]->nodes);
	  if (BE (err != REG_NOERROR, 0))
	    {
	      re_node_set_free (&next_nodes);
	      return err;
	    }
	}
      if (cur_state)
	{
	  err = check_arrival_add_next_nodes (mctx, str_idx,
					      &cur_state->non_eps_nodes,
					      &next_nodes);
	  if (BE (err != REG_NOERROR, 0))
	    {
	      re_node_set_free (&next_nodes);
	      return err;
	    }
	}
      ++str_idx;
      if (next_nodes.nelem)
	{
	  err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type);
	  if (BE (err != REG_NOERROR, 0))
	    {
	      re_node_set_free (&next_nodes);
	      return err;
	    }
	  err = expand_bkref_cache (mctx, &next_nodes, str_idx,
				    subexp_num, type);
	  if (BE (err != REG_NOERROR, 0))
	    {
	      re_node_set_free (&next_nodes);
	      return err;
	    }
	}
      context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags);
      cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context);
      if (BE (cur_state == NULL && err != REG_NOERROR, 0))
	{
	  re_node_set_free (&next_nodes);
	  return err;
	}
      mctx->state_log[str_idx] = cur_state;
      null_cnt = cur_state == NULL ? null_cnt + 1 : 0;
    }
  re_node_set_free (&next_nodes);
  cur_nodes = (mctx->state_log[last_str] == NULL ? NULL
	       : &mctx->state_log[last_str]->nodes);
  path->next_idx = str_idx;

  /* Fix MCTX.  */
  mctx->state_log = backup_state_log;
  mctx->input.cur_idx = backup_cur_idx;

  /* Then check the current node set has the node LAST_NODE.  */
  if (cur_nodes != NULL && re_node_set_contains (cur_nodes, last_node))
    return REG_NOERROR;

  return REG_NOMATCH;
}

/* Helper functions for check_arrival.  */

/* Calculate the destination nodes of CUR_NODES at STR_IDX, and append them
   to NEXT_NODES.
   TODO: This function is similar to the functions transit_state*(),
	 however this function has many additional works.
	 Can't we unify them?  */

static reg_errcode_t
internal_function
check_arrival_add_next_nodes (re_match_context_t *mctx, Idx str_idx,
			      re_node_set *cur_nodes, re_node_set *next_nodes)
{
  const re_dfa_t *const dfa = mctx->dfa;
  bool ok;
  Idx cur_idx;
  reg_errcode_t err = REG_NOERROR;
  re_node_set union_set;
  re_node_set_init_empty (&union_set);
  for (cur_idx = 0; cur_idx < cur_nodes->nelem; ++cur_idx)
    {
      int naccepted = 0;
      Idx cur_node = cur_nodes->elems[cur_idx];
#ifdef DEBUG
      re_token_type_t type = dfa->nodes[cur_node].type;
      assert (!IS_EPSILON_NODE (type));
#endif
#ifdef RE_ENABLE_I18N
      /* If the node may accept `multi byte'.  */
      if (dfa->nodes[cur_node].accept_mb)
	{
	  naccepted = check_node_accept_bytes (dfa, cur_node, &mctx->input,
					       str_idx);
	  if (naccepted > 1)
	    {
	      re_dfastate_t *dest_state;
	      Idx next_node = dfa->nexts[cur_node];
	      Idx next_idx = str_idx + naccepted;
	      dest_state = mctx->state_log[next_idx];
	      re_node_set_empty (&union_set);
	      if (dest_state)
		{
		  err = re_node_set_merge (&union_set, &dest_state->nodes);
		  if (BE (err != REG_NOERROR, 0))
		    {
		      re_node_set_free (&union_set);
		      return err;
		    }
		}
	      ok = re_node_set_insert (&union_set, next_node);
	      if (BE (! ok, 0))
		{
		  re_node_set_free (&union_set);
		  return REG_ESPACE;
		}
	      mctx->state_log[next_idx] = re_acquire_state (&err, dfa,
							    &union_set);
	      if (BE (mctx->state_log[next_idx] == NULL
		      && err != REG_NOERROR, 0))
		{
		  re_node_set_free (&union_set);
		  return err;
		}
	    }
	}
#endif /* RE_ENABLE_I18N */
      if (naccepted
	  || check_node_accept (mctx, dfa->nodes + cur_node, str_idx))
	{
	  ok = re_node_set_insert (next_nodes, dfa->nexts[cur_node]);
	  if (BE (! ok, 0))
	    {
	      re_node_set_free (&union_set);
	      return REG_ESPACE;
	    }
	}
    }
  re_node_set_free (&union_set);
  return REG_NOERROR;
}

/* For all the nodes in CUR_NODES, add the epsilon closures of them to
   CUR_NODES, however exclude the nodes which are:
    - inside the sub expression whose number is EX_SUBEXP, if FL_OPEN.
    - out of the sub expression whose number is EX_SUBEXP, if !FL_OPEN.
*/

static reg_errcode_t
internal_function
check_arrival_expand_ecl (const re_dfa_t *dfa, re_node_set *cur_nodes,
			  Idx ex_subexp, int type)
{
  reg_errcode_t err;
  Idx idx, outside_node;
  re_node_set new_nodes;
#ifdef DEBUG
  assert (cur_nodes->nelem);
#endif
  err = re_node_set_alloc (&new_nodes, cur_nodes->nelem);
  if (BE (err != REG_NOERROR, 0))
    return err;
  /* Create a new node set NEW_NODES with the nodes which are epsilon
     closures of the node in CUR_NODES.  */

  for (idx = 0; idx < cur_nodes->nelem; ++idx)
    {
      Idx cur_node = cur_nodes->elems[idx];
      const re_node_set *eclosure = dfa->eclosures + cur_node;
      outside_node = find_subexp_node (dfa, eclosure, ex_subexp, type);
      if (outside_node == REG_MISSING)
	{
	  /* There are no problematic nodes, just merge them.  */
	  err = re_node_set_merge (&new_nodes, eclosure);
	  if (BE (err != REG_NOERROR, 0))
	    {
	      re_node_set_free (&new_nodes);
	      return err;
	    }
	}
      else
	{
	  /* There are problematic nodes, re-calculate incrementally.  */
	  err = check_arrival_expand_ecl_sub (dfa, &new_nodes, cur_node,
					      ex_subexp, type);
	  if (BE (err != REG_NOERROR, 0))
	    {
	      re_node_set_free (&new_nodes);
	      return err;
	    }
	}
    }
  re_node_set_free (cur_nodes);
  *cur_nodes = new_nodes;
  return REG_NOERROR;
}

/* Helper function for check_arrival_expand_ecl.
   Check incrementally the epsilon closure of TARGET, and if it isn't
   problematic append it to DST_NODES.  */

static reg_errcode_t
internal_function
check_arrival_expand_ecl_sub (const re_dfa_t *dfa, re_node_set *dst_nodes,
			      Idx target, Idx ex_subexp, int type)
{
  Idx cur_node;
  for (cur_node = target; !re_node_set_contains (dst_nodes, cur_node);)
    {
      bool ok;

      if (dfa->nodes[cur_node].type == type
	  && dfa->nodes[cur_node].opr.idx == ex_subexp)
	{
	  if (type == OP_CLOSE_SUBEXP)
	    {
	      ok = re_node_set_insert (dst_nodes, cur_node);
	      if (BE (! ok, 0))
		return REG_ESPACE;
	    }
	  break;
	}
      ok = re_node_set_insert (dst_nodes, cur_node);
      if (BE (! ok, 0))
	return REG_ESPACE;
      if (dfa->edests[cur_node].nelem == 0)
	break;
      if (dfa->edests[cur_node].nelem == 2)
	{
	  reg_errcode_t err;
	  err = check_arrival_expand_ecl_sub (dfa, dst_nodes,
					      dfa->edests[cur_node].elems[1],
					      ex_subexp, type);
	  if (BE (err != REG_NOERROR, 0))
	    return err;
	}
      cur_node = dfa->edests[cur_node].elems[0];
    }
  return REG_NOERROR;
}


/* For all the back references in the current state, calculate the
   destination of the back references by the appropriate entry
   in MCTX->BKREF_ENTS.  */

static reg_errcode_t
internal_function
expand_bkref_cache (re_match_context_t *mctx, re_node_set *cur_nodes,
		    Idx cur_str, Idx subexp_num, int type)
{
  const re_dfa_t *const dfa = mctx->dfa;
  reg_errcode_t err;
  Idx cache_idx_start = search_cur_bkref_entry (mctx, cur_str);
  struct re_backref_cache_entry *ent;

  if (cache_idx_start == REG_MISSING)
    return REG_NOERROR;

 restart:
  ent = mctx->bkref_ents + cache_idx_start;
  do
    {
      Idx to_idx, next_node;

      /* Is this entry ENT is appropriate?  */
      if (!re_node_set_contains (cur_nodes, ent->node))
	continue; /* No.  */

      to_idx = cur_str + ent->subexp_to - ent->subexp_from;
      /* Calculate the destination of the back reference, and append it
	 to MCTX->STATE_LOG.  */
      if (to_idx == cur_str)
	{
	  /* The backreference did epsilon transit, we must re-check all the
	     node in the current state.  */
	  re_node_set new_dests;
	  reg_errcode_t err2, err3;
	  next_node = dfa->edests[ent->node].elems[0];
	  if (re_node_set_contains (cur_nodes, next_node))
	    continue;
	  err = re_node_set_init_1 (&new_dests, next_node);
	  err2 = check_arrival_expand_ecl (dfa, &new_dests, subexp_num, type);
	  err3 = re_node_set_merge (cur_nodes, &new_dests);
	  re_node_set_free (&new_dests);
	  if (BE (err != REG_NOERROR || err2 != REG_NOERROR
		  || err3 != REG_NOERROR, 0))
	    {
	      err = (err != REG_NOERROR ? err
		     : (err2 != REG_NOERROR ? err2 : err3));
	      return err;
	    }
	  /* TODO: It is still inefficient...  */
	  goto restart;
	}
      else
	{
	  re_node_set union_set;
	  next_node = dfa->nexts[ent->node];
	  if (mctx->state_log[to_idx])
	    {
	      bool ok;
	      if (re_node_set_contains (&mctx->state_log[to_idx]->nodes,
					next_node))
		continue;
	      err = re_node_set_init_copy (&union_set,
					   &mctx->state_log[to_idx]->nodes);
	      ok = re_node_set_insert (&union_set, next_node);
	      if (BE (err != REG_NOERROR || ! ok, 0))
		{
		  re_node_set_free (&union_set);
		  err = err != REG_NOERROR ? err : REG_ESPACE;
		  return err;
		}
	    }
	  else
	    {
	      err = re_node_set_init_1 (&union_set, next_node);
	      if (BE (err != REG_NOERROR, 0))
		return err;
	    }
	  mctx->state_log[to_idx] = re_acquire_state (&err, dfa, &union_set);
	  re_node_set_free (&union_set);
	  if (BE (mctx->state_log[to_idx] == NULL
		  && err != REG_NOERROR, 0))
	    return err;
	}
    }
  while (ent++->more);
  return REG_NOERROR;
}

/* Build transition table for the state.
   Return true if successful.  */

static bool
internal_function
build_trtable (const re_dfa_t *dfa, re_dfastate_t *state)
{
  reg_errcode_t err;
  Idx i, j;
  int ch;
  bool need_word_trtable = false;
  bitset_word_t elem, mask;
  bool dests_node_malloced = false;
  bool dest_states_malloced = false;
  Idx ndests; /* Number of the destination states from `state'.  */
  re_dfastate_t **trtable;
  re_dfastate_t **dest_states = NULL, **dest_states_word, **dest_states_nl;
  re_node_set follows, *dests_node;
  bitset_t *dests_ch;
  bitset_t acceptable;

  struct dests_alloc
  {
    re_node_set dests_node[SBC_MAX];
    bitset_t dests_ch[SBC_MAX];
  } *dests_alloc;

  /* We build DFA states which corresponds to the destination nodes
     from `state'.  `dests_node[i]' represents the nodes which i-th
     destination state contains, and `dests_ch[i]' represents the
     characters which i-th destination state accepts.  */
  if (__libc_use_alloca (sizeof (struct dests_alloc)))
    dests_alloc = (struct dests_alloc *) alloca (sizeof (struct dests_alloc));
  else
    {
      dests_alloc = re_malloc (struct dests_alloc, 1);
      if (BE (dests_alloc == NULL, 0))
	return false;
      dests_node_malloced = true;
    }
  dests_node = dests_alloc->dests_node;
  dests_ch = dests_alloc->dests_ch;

  /* Initialize transiton table.  */
  state->word_trtable = state->trtable = NULL;

  /* At first, group all nodes belonging to `state' into several
     destinations.  */
  ndests = group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch);
  if (BE (! REG_VALID_NONZERO_INDEX (ndests), 0))
    {
      if (dests_node_malloced)
	free (dests_alloc);
      if (ndests == 0)
	{
	  state->trtable = (re_dfastate_t **)
	    calloc (sizeof (re_dfastate_t *), SBC_MAX);
	  return true;
	}
      return false;
    }

  err = re_node_set_alloc (&follows, ndests + 1);
  if (BE (err != REG_NOERROR, 0))
    goto out_free;

  /* Avoid arithmetic overflow in size calculation.  */
  if (BE ((((SIZE_MAX - (sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX)
	    / (3 * sizeof (re_dfastate_t *)))
	   < ndests),
	  0))
    goto out_free;

  if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX
			 + ndests * 3 * sizeof (re_dfastate_t *)))
    dest_states = (re_dfastate_t **)
      alloca (ndests * 3 * sizeof (re_dfastate_t *));
  else
    {
      dest_states = (re_dfastate_t **)
	malloc (ndests * 3 * sizeof (re_dfastate_t *));
      if (BE (dest_states == NULL, 0))
	{
out_free:
	  if (dest_states_malloced)
	    free (dest_states);
	  re_node_set_free (&follows);
	  for (i = 0; i < ndests; ++i)
	    re_node_set_free (dests_node + i);
	  if (dests_node_malloced)
	    free (dests_alloc);
	  return false;
	}
      dest_states_malloced = true;
    }
  dest_states_word = dest_states + ndests;
  dest_states_nl = dest_states_word + ndests;
  bitset_empty (acceptable);

  /* Then build the states for all destinations.  */
  for (i = 0; i < ndests; ++i)
    {
      Idx next_node;
      re_node_set_empty (&follows);
      /* Merge the follows of this destination states.  */
      for (j = 0; j < dests_node[i].nelem; ++j)
	{
	  next_node = dfa->nexts[dests_node[i].elems[j]];
	  if (next_node != REG_MISSING)
	    {
	      err = re_node_set_merge (&follows, dfa->eclosures + next_node);
	      if (BE (err != REG_NOERROR, 0))
		goto out_free;
	    }
	}
      dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0);
      if (BE (dest_states[i] == NULL && err != REG_NOERROR, 0))
	goto out_free;
      /* If the new state has context constraint,
	 build appropriate states for these contexts.  */
      if (dest_states[i]->has_constraint)
	{
	  dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows,
							  CONTEXT_WORD);
	  if (BE (dest_states_word[i] == NULL && err != REG_NOERROR, 0))
	    goto out_free;

	  if (dest_states[i] != dest_states_word[i] && dfa->mb_cur_max > 1)
	    need_word_trtable = true;

	  dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows,
							CONTEXT_NEWLINE);
	  if (BE (dest_states_nl[i] == NULL && err != REG_NOERROR, 0))
	    goto out_free;
 	}
      else
	{
	  dest_states_word[i] = dest_states[i];
	  dest_states_nl[i] = dest_states[i];
	}
      bitset_merge (acceptable, dests_ch[i]);
    }

  if (!BE (need_word_trtable, 0))
    {
      /* We don't care about whether the following character is a word
	 character, or we are in a single-byte character set so we can
	 discern by looking at the character code: allocate a
	 256-entry transition table.  */
      trtable = state->trtable =
	(re_dfastate_t **) calloc (sizeof (re_dfastate_t *), SBC_MAX);
      if (BE (trtable == NULL, 0))
	goto out_free;

      /* For all characters ch...:  */
      for (i = 0; i < BITSET_WORDS; ++i)
	for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1;
	     elem;
	     mask <<= 1, elem >>= 1, ++ch)
	  if (BE (elem & 1, 0))
	    {
	      /* There must be exactly one destination which accepts
		 character ch.  See group_nodes_into_DFAstates.  */
	      for (j = 0; (dests_ch[j][i] & mask) == 0; ++j)
		;

	      /* j-th destination accepts the word character ch.  */
	      if (dfa->word_char[i] & mask)
		trtable[ch] = dest_states_word[j];
	      else
		trtable[ch] = dest_states[j];
	    }
    }
  else
    {
      /* We care about whether the following character is a word
	 character, and we are in a multi-byte character set: discern
	 by looking at the character code: build two 256-entry
	 transition tables, one starting at trtable[0] and one
	 starting at trtable[SBC_MAX].  */
      trtable = state->word_trtable =
	(re_dfastate_t **) calloc (sizeof (re_dfastate_t *), 2 * SBC_MAX);
      if (BE (trtable == NULL, 0))
	goto out_free;

      /* For all characters ch...:  */
      for (i = 0; i < BITSET_WORDS; ++i)
	for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1;
	     elem;
	     mask <<= 1, elem >>= 1, ++ch)
	  if (BE (elem & 1, 0))
	    {
	      /* There must be exactly one destination which accepts
		 character ch.  See group_nodes_into_DFAstates.  */
	      for (j = 0; (dests_ch[j][i] & mask) == 0; ++j)
		;

	      /* j-th destination accepts the word character ch.  */
	      trtable[ch] = dest_states[j];
	      trtable[ch + SBC_MAX] = dest_states_word[j];
	    }
    }

  /* new line */
  if (bitset_contain (acceptable, NEWLINE_CHAR))
    {
      /* The current state accepts newline character.  */
      for (j = 0; j < ndests; ++j)
	if (bitset_contain (dests_ch[j], NEWLINE_CHAR))
	  {
	    /* k-th destination accepts newline character.  */
	    trtable[NEWLINE_CHAR] = dest_states_nl[j];
	    if (need_word_trtable)
	      trtable[NEWLINE_CHAR + SBC_MAX] = dest_states_nl[j];
	    /* There must be only one destination which accepts
	       newline.  See group_nodes_into_DFAstates.  */
	    break;
	  }
    }

  if (dest_states_malloced)
    free (dest_states);

  re_node_set_free (&follows);
  for (i = 0; i < ndests; ++i)
    re_node_set_free (dests_node + i);

  if (dests_node_malloced)
    free (dests_alloc);

  return true;
}

/* Group all nodes belonging to STATE into several destinations.
   Then for all destinations, set the nodes belonging to the destination
   to DESTS_NODE[i] and set the characters accepted by the destination
   to DEST_CH[i].  This function return the number of destinations.  */

static Idx
internal_function
group_nodes_into_DFAstates (const re_dfa_t *dfa, const re_dfastate_t *state,
			    re_node_set *dests_node, bitset_t *dests_ch)
{
  reg_errcode_t err;
  bool ok;
  Idx i, j, k;
  Idx ndests; /* Number of the destinations from `state'.  */
  bitset_t accepts; /* Characters a node can accept.  */
  const re_node_set *cur_nodes = &state->nodes;
  bitset_empty (accepts);
  ndests = 0;

  /* For all the nodes belonging to `state',  */
  for (i = 0; i < cur_nodes->nelem; ++i)
    {
      re_token_t *node = &dfa->nodes[cur_nodes->elems[i]];
      re_token_type_t type = node->type;
      unsigned int constraint = node->constraint;

      /* Enumerate all single byte character this node can accept.  */
      if (type == CHARACTER)
	bitset_set (accepts, node->opr.c);
      else if (type == SIMPLE_BRACKET)
	{
	  bitset_merge (accepts, node->opr.sbcset);
	}
      else if (type == OP_PERIOD)
	{
#ifdef RE_ENABLE_I18N
	  if (dfa->mb_cur_max > 1)
	    bitset_merge (accepts, dfa->sb_char);
	  else
#endif
	    bitset_set_all (accepts);
	  if (!(dfa->syntax & RE_DOT_NEWLINE))
	    bitset_clear (accepts, '\n');
	  if (dfa->syntax & RE_DOT_NOT_NULL)
	    bitset_clear (accepts, '\0');
	}
#ifdef RE_ENABLE_I18N
      else if (type == OP_UTF8_PERIOD)
        {
	  if (ASCII_CHARS % BITSET_WORD_BITS == 0)
	    memset (accepts, -1, ASCII_CHARS / CHAR_BIT);
	  else
	    bitset_merge (accepts, utf8_sb_map);
	  if (!(dfa->syntax & RE_DOT_NEWLINE))
	    bitset_clear (accepts, '\n');
	  if (dfa->syntax & RE_DOT_NOT_NULL)
	    bitset_clear (accepts, '\0');
        }
#endif
      else
	continue;

      /* Check the `accepts' and sift the characters which are not
	 match it the context.  */
      if (constraint)
	{
	  if (constraint & NEXT_NEWLINE_CONSTRAINT)
	    {
	      bool accepts_newline = bitset_contain (accepts, NEWLINE_CHAR);
	      bitset_empty (accepts);
	      if (accepts_newline)
		bitset_set (accepts, NEWLINE_CHAR);
	      else
		continue;
	    }
	  if (constraint & NEXT_ENDBUF_CONSTRAINT)
	    {
	      bitset_empty (accepts);
	      continue;
	    }

	  if (constraint & NEXT_WORD_CONSTRAINT)
	    {
	      bitset_word_t any_set = 0;
	      if (type == CHARACTER && !node->word_char)
		{
		  bitset_empty (accepts);
		  continue;
		}
#ifdef RE_ENABLE_I18N
	      if (dfa->mb_cur_max > 1)
		for (j = 0; j < BITSET_WORDS; ++j)
		  any_set |= (accepts[j] &= (dfa->word_char[j] | ~dfa->sb_char[j]));
	      else
#endif
		for (j = 0; j < BITSET_WORDS; ++j)
		  any_set |= (accepts[j] &= dfa->word_char[j]);
	      if (!any_set)
		continue;
	    }
	  if (constraint & NEXT_NOTWORD_CONSTRAINT)
	    {
	      bitset_word_t any_set = 0;
	      if (type == CHARACTER && node->word_char)
		{
		  bitset_empty (accepts);
		  continue;
		}
#ifdef RE_ENABLE_I18N
	      if (dfa->mb_cur_max > 1)
		for (j = 0; j < BITSET_WORDS; ++j)
		  any_set |= (accepts[j] &= ~(dfa->word_char[j] & dfa->sb_char[j]));
	      else
#endif
		for (j = 0; j < BITSET_WORDS; ++j)
		  any_set |= (accepts[j] &= ~dfa->word_char[j]);
	      if (!any_set)
		continue;
	    }
	}

      /* Then divide `accepts' into DFA states, or create a new
	 state.  Above, we make sure that accepts is not empty.  */
      for (j = 0; j < ndests; ++j)
	{
	  bitset_t intersec; /* Intersection sets, see below.  */
	  bitset_t remains;
	  /* Flags, see below.  */
	  bitset_word_t has_intersec, not_subset, not_consumed;

	  /* Optimization, skip if this state doesn't accept the character.  */
	  if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c))
	    continue;

	  /* Enumerate the intersection set of this state and `accepts'.  */
	  has_intersec = 0;
	  for (k = 0; k < BITSET_WORDS; ++k)
	    has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k];
	  /* And skip if the intersection set is empty.  */
	  if (!has_intersec)
	    continue;

	  /* Then check if this state is a subset of `accepts'.  */
	  not_subset = not_consumed = 0;
	  for (k = 0; k < BITSET_WORDS; ++k)
	    {
	      not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k];
	      not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k];
	    }

	  /* If this state isn't a subset of `accepts', create a
	     new group state, which has the `remains'. */
	  if (not_subset)
	    {
	      bitset_copy (dests_ch[ndests], remains);
	      bitset_copy (dests_ch[j], intersec);
	      err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]);
	      if (BE (err != REG_NOERROR, 0))
		goto error_return;
	      ++ndests;
	    }

	  /* Put the position in the current group. */
	  ok = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]);
	  if (BE (! ok, 0))
	    goto error_return;

	  /* If all characters are consumed, go to next node. */
	  if (!not_consumed)
	    break;
	}
      /* Some characters remain, create a new group. */
      if (j == ndests)
	{
	  bitset_copy (dests_ch[ndests], accepts);
	  err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]);
	  if (BE (err != REG_NOERROR, 0))
	    goto error_return;
	  ++ndests;
	  bitset_empty (accepts);
	}
    }
  return ndests;
 error_return:
  for (j = 0; j < ndests; ++j)
    re_node_set_free (dests_node + j);
  return REG_MISSING;
}

#ifdef RE_ENABLE_I18N
/* Check how many bytes the node `dfa->nodes[node_idx]' accepts.
   Return the number of the bytes the node accepts.
   STR_IDX is the current index of the input string.

   This function handles the nodes which can accept one character, or
   one collating element like '.', '[a-z]', opposite to the other nodes
   can only accept one byte.  */

static int
internal_function
check_node_accept_bytes (const re_dfa_t *dfa, Idx node_idx,
			 const re_string_t *input, Idx str_idx)
{
  const re_token_t *node = dfa->nodes + node_idx;
  int char_len, elem_len;
  Idx i;

  if (BE (node->type == OP_UTF8_PERIOD, 0))
    {
      unsigned char c = re_string_byte_at (input, str_idx), d;
      if (BE (c < 0xc2, 1))
	return 0;

      if (str_idx + 2 > input->len)
	return 0;

      d = re_string_byte_at (input, str_idx + 1);
      if (c < 0xe0)
	return (d < 0x80 || d > 0xbf) ? 0 : 2;
      else if (c < 0xf0)
	{
	  char_len = 3;
	  if (c == 0xe0 && d < 0xa0)
	    return 0;
	}
      else if (c < 0xf8)
	{
	  char_len = 4;
	  if (c == 0xf0 && d < 0x90)
	    return 0;
	}
      else if (c < 0xfc)
	{
	  char_len = 5;
	  if (c == 0xf8 && d < 0x88)
	    return 0;
	}
      else if (c < 0xfe)
	{
	  char_len = 6;
	  if (c == 0xfc && d < 0x84)
	    return 0;
	}
      else
	return 0;

      if (str_idx + char_len > input->len)
	return 0;

      for (i = 1; i < char_len; ++i)
	{
	  d = re_string_byte_at (input, str_idx + i);
	  if (d < 0x80 || d > 0xbf)
	    return 0;
	}
      return char_len;
    }

  char_len = re_string_char_size_at (input, str_idx);
  if (node->type == OP_PERIOD)
    {
      if (char_len <= 1)
        return 0;
      /* FIXME: I don't think this if is needed, as both '\n'
	 and '\0' are char_len == 1.  */
      /* '.' accepts any one character except the following two cases.  */
      if ((!(dfa->syntax & RE_DOT_NEWLINE) &&
	   re_string_byte_at (input, str_idx) == '\n') ||
	  ((dfa->syntax & RE_DOT_NOT_NULL) &&
	   re_string_byte_at (input, str_idx) == '\0'))
	return 0;
      return char_len;
    }

  elem_len = re_string_elem_size_at (input, str_idx);
  if ((elem_len <= 1 && char_len <= 1) || char_len == 0)
    return 0;

  if (node->type == COMPLEX_BRACKET)
    {
      const re_charset_t *cset = node->opr.mbcset;
# ifdef _LIBC
      const unsigned char *pin
	= ((const unsigned char *) re_string_get_buffer (input) + str_idx);
      Idx j;
      uint32_t nrules;
# endif /* _LIBC */
      int match_len = 0;
      wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars)
		    ? re_string_wchar_at (input, str_idx) : 0);

      /* match with multibyte character?  */
      for (i = 0; i < cset->nmbchars; ++i)
	if (wc == cset->mbchars[i])
	  {
	    match_len = char_len;
	    goto check_node_accept_bytes_match;
	  }
      /* match with character_class?  */
      for (i = 0; i < cset->nchar_classes; ++i)
	{
	  wctype_t wt = cset->char_classes[i];
	  if (__iswctype (wc, wt))
	    {
	      match_len = char_len;
	      goto check_node_accept_bytes_match;
	    }
	}

# ifdef _LIBC
      nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
      if (nrules != 0)
	{
	  unsigned int in_collseq = 0;
	  const int32_t *table, *indirect;
	  const unsigned char *weights, *extra;
	  const char *collseqwc;
	  int32_t idx;
	  /* This #include defines a local function!  */
#  include <locale/weight.h>

	  /* match with collating_symbol?  */
	  if (cset->ncoll_syms)
	    extra = (const unsigned char *)
	      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
	  for (i = 0; i < cset->ncoll_syms; ++i)
	    {
	      const unsigned char *coll_sym = extra + cset->coll_syms[i];
	      /* Compare the length of input collating element and
		 the length of current collating element.  */
	      if (*coll_sym != elem_len)
		continue;
	      /* Compare each bytes.  */
	      for (j = 0; j < *coll_sym; j++)
		if (pin[j] != coll_sym[1 + j])
		  break;
	      if (j == *coll_sym)
		{
		  /* Match if every bytes is equal.  */
		  match_len = j;
		  goto check_node_accept_bytes_match;
		}
	    }

	  if (cset->nranges)
	    {
	      if (elem_len <= char_len)
		{
		  collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC);
		  in_collseq = __collseq_table_lookup (collseqwc, wc);
		}
	      else
		in_collseq = find_collation_sequence_value (pin, elem_len);
	    }
	  /* match with range expression?  */
	  for (i = 0; i < cset->nranges; ++i)
	    if (cset->range_starts[i] <= in_collseq
		&& in_collseq <= cset->range_ends[i])
	      {
		match_len = elem_len;
		goto check_node_accept_bytes_match;
	      }

	  /* match with equivalence_class?  */
	  if (cset->nequiv_classes)
	    {
	      const unsigned char *cp = pin;
	      table = (const int32_t *)
		_NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
	      weights = (const unsigned char *)
		_NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
	      extra = (const unsigned char *)
		_NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
	      indirect = (const int32_t *)
		_NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
	      idx = findidx (&cp);
	      if (idx > 0)
		for (i = 0; i < cset->nequiv_classes; ++i)
		  {
		    int32_t equiv_class_idx = cset->equiv_classes[i];
		    size_t weight_len = weights[idx];
		    if (weight_len == weights[equiv_class_idx])
		      {
			Idx cnt = 0;
			while (cnt <= weight_len
			       && (weights[equiv_class_idx + 1 + cnt]
				   == weights[idx + 1 + cnt]))
			  ++cnt;
			if (cnt > weight_len)
			  {
			    match_len = elem_len;
			    goto check_node_accept_bytes_match;
			  }
		      }
		  }
	    }
	}
      else
# endif /* _LIBC */
	{
	  /* match with range expression?  */
#if __GNUC__ >= 2
	  wchar_t cmp_buf[] = {L'\0', L'\0', wc, L'\0', L'\0', L'\0'};
#else
	  wchar_t cmp_buf[] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'};
	  cmp_buf[2] = wc;
#endif
	  for (i = 0; i < cset->nranges; ++i)
	    {
	      cmp_buf[0] = cset->range_starts[i];
	      cmp_buf[4] = cset->range_ends[i];
	      if (wcscoll (cmp_buf, cmp_buf + 2) <= 0
		  && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0)
		{
		  match_len = char_len;
		  goto check_node_accept_bytes_match;
		}
	    }
	}
    check_node_accept_bytes_match:
      if (!cset->non_match)
	return match_len;
      else
	{
	  if (match_len > 0)
	    return 0;
	  else
	    return (elem_len > char_len) ? elem_len : char_len;
	}
    }
  return 0;
}

# ifdef _LIBC
static unsigned int
internal_function
find_collation_sequence_value (const unsigned char *mbs, size_t mbs_len)
{
  uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
  if (nrules == 0)
    {
      if (mbs_len == 1)
	{
	  /* No valid character.  Match it as a single byte character.  */
	  const unsigned char *collseq = (const unsigned char *)
	    _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB);
	  return collseq[mbs[0]];
	}
      return UINT_MAX;
    }
  else
    {
      int32_t idx;
      const unsigned char *extra = (const unsigned char *)
	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
      int32_t extrasize = (const unsigned char *)
	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB + 1) - extra;

      for (idx = 0; idx < extrasize;)
	{
	  int mbs_cnt;
	  bool found = false;
	  int32_t elem_mbs_len;
	  /* Skip the name of collating element name.  */
	  idx = idx + extra[idx] + 1;
	  elem_mbs_len = extra[idx++];
	  if (mbs_len == elem_mbs_len)
	    {
	      for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt)
		if (extra[idx + mbs_cnt] != mbs[mbs_cnt])
		  break;
	      if (mbs_cnt == elem_mbs_len)
		/* Found the entry.  */
		found = true;
	    }
	  /* Skip the byte sequence of the collating element.  */
	  idx += elem_mbs_len;
	  /* Adjust for the alignment.  */
	  idx = (idx + 3) & ~3;
	  /* Skip the collation sequence value.  */
	  idx += sizeof (uint32_t);
	  /* Skip the wide char sequence of the collating element.  */
	  idx = idx + sizeof (uint32_t) * (extra[idx] + 1);
	  /* If we found the entry, return the sequence value.  */
	  if (found)
	    return *(uint32_t *) (extra + idx);
	  /* Skip the collation sequence value.  */
	  idx += sizeof (uint32_t);
	}
      return UINT_MAX;
    }
}
# endif /* _LIBC */
#endif /* RE_ENABLE_I18N */

/* Check whether the node accepts the byte which is IDX-th
   byte of the INPUT.  */

static bool
internal_function
check_node_accept (const re_match_context_t *mctx, const re_token_t *node,
		   Idx idx)
{
  unsigned char ch;
  ch = re_string_byte_at (&mctx->input, idx);
  switch (node->type)
    {
    case CHARACTER:
      if (node->opr.c != ch)
        return false;
      break;

    case SIMPLE_BRACKET:
      if (!bitset_contain (node->opr.sbcset, ch))
        return false;
      break;

#ifdef RE_ENABLE_I18N
    case OP_UTF8_PERIOD:
      if (ch >= ASCII_CHARS)
        return false;
      /* FALLTHROUGH */
#endif
    case OP_PERIOD:
      if ((ch == '\n' && !(mctx->dfa->syntax & RE_DOT_NEWLINE))
	  || (ch == '\0' && (mctx->dfa->syntax & RE_DOT_NOT_NULL)))
	return false;
      break;

    default:
      return false;
    }

  if (node->constraint)
    {
      /* The node has constraints.  Check whether the current context
	 satisfies the constraints.  */
      unsigned int context = re_string_context_at (&mctx->input, idx,
						   mctx->eflags);
      if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context))
	return false;
    }

  return true;
}

/* Extend the buffers, if the buffers have run out.  */

static reg_errcode_t
internal_function
extend_buffers (re_match_context_t *mctx)
{
  reg_errcode_t ret;
  re_string_t *pstr = &mctx->input;

  /* Avoid overflow.  */
  if (BE (SIZE_MAX / 2 / sizeof (re_dfastate_t *) <= pstr->bufs_len, 0))
    return REG_ESPACE;

  /* Double the lengthes of the buffers.  */
  ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2);
  if (BE (ret != REG_NOERROR, 0))
    return ret;

  if (mctx->state_log != NULL)
    {
      /* And double the length of state_log.  */
      /* XXX We have no indication of the size of this buffer.  If this
	 allocation fail we have no indication that the state_log array
	 does not have the right size.  */
      re_dfastate_t **new_array = re_realloc (mctx->state_log, re_dfastate_t *,
					      pstr->bufs_len + 1);
      if (BE (new_array == NULL, 0))
	return REG_ESPACE;
      mctx->state_log = new_array;
    }

  /* Then reconstruct the buffers.  */
  if (pstr->icase)
    {
#ifdef RE_ENABLE_I18N
      if (pstr->mb_cur_max > 1)
	{
	  ret = build_wcs_upper_buffer (pstr);
	  if (BE (ret != REG_NOERROR, 0))
	    return ret;
	}
      else
#endif /* RE_ENABLE_I18N  */
	build_upper_buffer (pstr);
    }
  else
    {
#ifdef RE_ENABLE_I18N
      if (pstr->mb_cur_max > 1)
	build_wcs_buffer (pstr);
      else
#endif /* RE_ENABLE_I18N  */
	{
	  if (pstr->trans != NULL)
	    re_string_translate_buffer (pstr);
	}
    }
  return REG_NOERROR;
}


/* Functions for matching context.  */

/* Initialize MCTX.  */

static reg_errcode_t
internal_function
match_ctx_init (re_match_context_t *mctx, int eflags, Idx n)
{
  mctx->eflags = eflags;
  mctx->match_last = REG_MISSING;
  if (n > 0)
    {
      /* Avoid overflow.  */
      size_t max_object_size =
	MAX (sizeof (struct re_backref_cache_entry),
	     sizeof (re_sub_match_top_t *));
      if (BE (SIZE_MAX / max_object_size < n, 0))
	return REG_ESPACE;

      mctx->bkref_ents = re_malloc (struct re_backref_cache_entry, n);
      mctx->sub_tops = re_malloc (re_sub_match_top_t *, n);
      if (BE (mctx->bkref_ents == NULL || mctx->sub_tops == NULL, 0))
	return REG_ESPACE;
    }
  /* Already zero-ed by the caller.
     else
       mctx->bkref_ents = NULL;
     mctx->nbkref_ents = 0;
     mctx->nsub_tops = 0;  */
  mctx->abkref_ents = n;
  mctx->max_mb_elem_len = 1;
  mctx->asub_tops = n;
  return REG_NOERROR;
}

/* Clean the entries which depend on the current input in MCTX.
   This function must be invoked when the matcher changes the start index
   of the input, or changes the input string.  */

static void
internal_function
match_ctx_clean (re_match_context_t *mctx)
{
  Idx st_idx;
  for (st_idx = 0; st_idx < mctx->nsub_tops; ++st_idx)
    {
      Idx sl_idx;
      re_sub_match_top_t *top = mctx->sub_tops[st_idx];
      for (sl_idx = 0; sl_idx < top->nlasts; ++sl_idx)
	{
	  re_sub_match_last_t *last = top->lasts[sl_idx];
	  re_free (last->path.array);
	  re_free (last);
	}
      re_free (top->lasts);
      if (top->path)
	{
	  re_free (top->path->array);
	  re_free (top->path);
	}
      free (top);
    }

  mctx->nsub_tops = 0;
  mctx->nbkref_ents = 0;
}

/* Free all the memory associated with MCTX.  */

static void
internal_function
match_ctx_free (re_match_context_t *mctx)
{
  /* First, free all the memory associated with MCTX->SUB_TOPS.  */
  match_ctx_clean (mctx);
  re_free (mctx->sub_tops);
  re_free (mctx->bkref_ents);
}

/* Add a new backreference entry to MCTX.
   Note that we assume that caller never call this function with duplicate
   entry, and call with STR_IDX which isn't smaller than any existing entry.
*/

static reg_errcode_t
internal_function
match_ctx_add_entry (re_match_context_t *mctx, Idx node, Idx str_idx, Idx from,
		     Idx to)
{
  if (mctx->nbkref_ents >= mctx->abkref_ents)
    {
      struct re_backref_cache_entry* new_entry;
      new_entry = re_realloc (mctx->bkref_ents, struct re_backref_cache_entry,
			      mctx->abkref_ents * 2);
      if (BE (new_entry == NULL, 0))
	{
	  re_free (mctx->bkref_ents);
	  return REG_ESPACE;
	}
      mctx->bkref_ents = new_entry;
      memset (mctx->bkref_ents + mctx->nbkref_ents, '\0',
	      sizeof (struct re_backref_cache_entry) * mctx->abkref_ents);
      mctx->abkref_ents *= 2;
    }
  if (mctx->nbkref_ents > 0
      && mctx->bkref_ents[mctx->nbkref_ents - 1].str_idx == str_idx)
    mctx->bkref_ents[mctx->nbkref_ents - 1].more = 1;

  mctx->bkref_ents[mctx->nbkref_ents].node = node;
  mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx;
  mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from;
  mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to;

  /* This is a cache that saves negative results of check_dst_limits_calc_pos.
     If bit N is clear, means that this entry won't epsilon-transition to
     an OP_OPEN_SUBEXP or OP_CLOSE_SUBEXP for the N+1-th subexpression.  If
     it is set, check_dst_limits_calc_pos_1 will recurse and try to find one
     such node.

     A backreference does not epsilon-transition unless it is empty, so set
     to all zeros if FROM != TO.  */
  mctx->bkref_ents[mctx->nbkref_ents].eps_reachable_subexps_map
    = (from == to ? -1 : 0);

  mctx->bkref_ents[mctx->nbkref_ents++].more = 0;
  if (mctx->max_mb_elem_len < to - from)
    mctx->max_mb_elem_len = to - from;
  return REG_NOERROR;
}

/* Return the first entry with the same str_idx, or REG_MISSING if none is
   found.  Note that MCTX->BKREF_ENTS is already sorted by MCTX->STR_IDX.  */

static Idx
internal_function
search_cur_bkref_entry (const re_match_context_t *mctx, Idx str_idx)
{
  Idx left, right, mid, last;
  last = right = mctx->nbkref_ents;
  for (left = 0; left < right;)
    {
      mid = (left + right) / 2;
      if (mctx->bkref_ents[mid].str_idx < str_idx)
	left = mid + 1;
      else
	right = mid;
    }
  if (left < last && mctx->bkref_ents[left].str_idx == str_idx)
    return left;
  else
    return REG_MISSING;
}

/* Register the node NODE, whose type is OP_OPEN_SUBEXP, and which matches
   at STR_IDX.  */

static reg_errcode_t
internal_function
match_ctx_add_subtop (re_match_context_t *mctx, Idx node, Idx str_idx)
{
#ifdef DEBUG
  assert (mctx->sub_tops != NULL);
  assert (mctx->asub_tops > 0);
#endif
  if (BE (mctx->nsub_tops == mctx->asub_tops, 0))
    {
      Idx new_asub_tops = mctx->asub_tops * 2;
      re_sub_match_top_t **new_array = re_realloc (mctx->sub_tops,
						   re_sub_match_top_t *,
						   new_asub_tops);
      if (BE (new_array == NULL, 0))
	return REG_ESPACE;
      mctx->sub_tops = new_array;
      mctx->asub_tops = new_asub_tops;
    }
  mctx->sub_tops[mctx->nsub_tops] = calloc (1, sizeof (re_sub_match_top_t));
  if (BE (mctx->sub_tops[mctx->nsub_tops] == NULL, 0))
    return REG_ESPACE;
  mctx->sub_tops[mctx->nsub_tops]->node = node;
  mctx->sub_tops[mctx->nsub_tops++]->str_idx = str_idx;
  return REG_NOERROR;
}

/* Register the node NODE, whose type is OP_CLOSE_SUBEXP, and which matches
   at STR_IDX, whose corresponding OP_OPEN_SUBEXP is SUB_TOP.  */

static re_sub_match_last_t *
internal_function
match_ctx_add_sublast (re_sub_match_top_t *subtop, Idx node, Idx str_idx)
{
  re_sub_match_last_t *new_entry;
  if (BE (subtop->nlasts == subtop->alasts, 0))
    {
      Idx new_alasts = 2 * subtop->alasts + 1;
      re_sub_match_last_t **new_array = re_realloc (subtop->lasts,
						    re_sub_match_last_t *,
						    new_alasts);
      if (BE (new_array == NULL, 0))
	return NULL;
      subtop->lasts = new_array;
      subtop->alasts = new_alasts;
    }
  new_entry = calloc (1, sizeof (re_sub_match_last_t));
  if (BE (new_entry != NULL, 1))
    {
      subtop->lasts[subtop->nlasts] = new_entry;
      new_entry->node = node;
      new_entry->str_idx = str_idx;
      ++subtop->nlasts;
    }
  return new_entry;
}

static void
internal_function
sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts,
	       re_dfastate_t **limited_sts, Idx last_node, Idx last_str_idx)
{
  sctx->sifted_states = sifted_sts;
  sctx->limited_states = limited_sts;
  sctx->last_node = last_node;
  sctx->last_str_idx = last_str_idx;
  re_node_set_init_empty (&sctx->limits);
}