md5.c 8.99 KB
/*
 * This code implements the MD5 message-digest algorithm.
 * The algorithm is due to Ron Rivest.  This code was
 * written by Colin Plumb in 1993, no copyright is claimed.
 * This code is in the public domain; do with it what you wish.
 *
 * Equivalent code is available from RSA Data Security, Inc.
 * This code has been tested against that, and is equivalent,
 * except that you don't need to include two pages of legalese
 * with every copy.
 *
 * To compute the message digest of a chunk of bytes, declare an
 * MD5Context structure, pass it to MD5Init, call MD5Update as
 * needed on buffers full of bytes, and then call MD5Final, which
 * will fill a supplied 16-byte array with the digest.
 */
/*
 * Modified (2001-01-31) to work on Sparcs    <gray@Mirddin.farlep.net>
 */
#if defined(HAVE_CONFIG_H)
# include <config.h>
#endif

#define MD5_CRYPT

#ifdef MD5_CRYPT
#include <string.h>             /* for memcpy() */
#include <md5.h>

void
md5_calc(unsigned char *output, unsigned char *input, unsigned int inlen)  
{
        MD5_CTX context;

        MD5Init(&context);
        MD5Update(&context, input, inlen);
        MD5Final(output, &context);
}


static void
bytes_encode(unsigned char *output, uint32 *input, unsigned int len)
{
        unsigned int i, j;

        for (i = 0, j = 0; j < len; i++, j += 4) {
                output[j] = (unsigned char)(input[i] & 0xff);
                output[j+1] = (unsigned char)((input[i] >> 8) & 0xff);
                output[j+2] = (unsigned char)((input[i] >> 16) & 0xff);
                output[j+3] = (unsigned char)((input[i] >> 24) & 0xff);
        }
}

static void 
bytes_decode(uint32 *output, unsigned char *input, unsigned int len)
{
        unsigned int i, j;
        
        for (i = 0, j = 0; j < len; i++, j += 4)
                output[i] = ((uint32)input[j]) |
                            (((uint32)input[j+1]) << 8) |
                            (((uint32)input[j+2]) << 16) |
                            (((uint32)input[j+3]) << 24);
}

/*
 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
 * initialization constants.
 */
void
MD5Init(struct MD5Context *ctx)
{
    ctx->buf[0] = 0x67452301;
    ctx->buf[1] = 0xefcdab89;
    ctx->buf[2] = 0x98badcfe;
    ctx->buf[3] = 0x10325476;

    ctx->bits[0] = 0;
    ctx->bits[1] = 0;
}

/*
 * Update context to reflect the concatenation of another buffer full
 * of bytes.
 */
void
MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
{
    uint32 t;

    /* Update bitcount */

    t = ctx->bits[0];
    if ((ctx->bits[0] = t + ((uint32) len << 3)) < t)
        ctx->bits[1]++;         /* Carry from low to high */
    ctx->bits[1] += len >> 29;

    t = (t >> 3) & 0x3f;        /* Bytes already in shsInfo->data */
    /* Handle any leading odd-sized chunks */

    if (t) {
        unsigned char *p = (unsigned char *) ctx->in + t;
        t = 64 - t;
        if (len < t) {
            memcpy(p, buf, len);
            return;
        }
        memcpy(p, buf, t);
        MD5Transform(ctx->buf, (uint32 *) ctx->in);
        buf += t;
        len -= t;
    }
    /* Process data in 64-byte chunks */

    while (len >= 64) {
        memcpy(ctx->in, buf, 64);
        MD5Transform(ctx->buf, (uint32 const *) buf);
        buf += 64;
        len -= 64;
    }

    /* Handle any remaining bytes of data. */

    memcpy(ctx->in, buf, len);
}

/*
 * Final wrapup - pad to 64-byte boundary with the bit pattern 
 * 1 0* (64-bit count of bits processed, MSB-first)
 */
void
MD5Final(unsigned char digest[16], struct MD5Context *ctx)
{
    unsigned count;
    unsigned char *p;

    /* Compute number of bytes mod 64 */
    count = (ctx->bits[0] >> 3) & 0x3F;

    /* Set the first char of padding to 0x80.  This is safe since there is
       always at least one byte free */
    p = ctx->in + count;
    *p++ = 0x80;

    /* Bytes of padding needed to make 64 bytes */
    count = 64 - 1 - count;

    /* Pad out to 56 mod 64 */
    if (count < 8) {
        /* Two lots of padding:  Pad the first block to 64 bytes */
        memset(p, 0, count);
        MD5Transform(ctx->buf, (uint32 *) ctx->in);

        /* Now fill the next block with 56 bytes */
        memset(ctx->in, 0, 56);
    } else {
        /* Pad block to 56 bytes */
        memset(p, 0, count - 8);
    }

    /* Append length in bits and transform */
    bytes_encode((unsigned char*)((uint32 *) ctx->in + 14), ctx->bits, 8);
    MD5Transform(ctx->buf, (uint32 *) ctx->in);
    bytes_encode(digest,ctx->buf,16);   
    memset((char *) ctx, 0, sizeof(ctx));       /* In case it's sensitive */
}

#ifndef ASM_MD5

/* The four core functions - F1 is optimized somewhat */

#define F1(x, y, z) (x & y | ~x & z) 
/*#define F1(x, y, z) (z ^ (x & (y ^ z))) */
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))

/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
        ( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x ); 

#if 0
dump(char *label,unsigned char *p, int len)
{
        int i;
        return;
        printf("dump: %s\n", label);
        for (i=0; i<len; i++)
                printf("%x\n", p[i]);
        printf("--\n");

}
#endif

/*
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data.  MD5Update blocks
 * the data and converts bytes into longwords for this routine.
 */
void
MD5Transform(uint32 buf[4], uint32 const cin[16])
{
    register uint32 a, b, c, d;
    uint32 in[16];

    bytes_decode(in, (unsigned char *) cin, 64);

    a = buf[0];
    b = buf[1];
    c = buf[2];
    d = buf[3];

    MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
    MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
    MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
    MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
    MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
    MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
    MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
    MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
    MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
    MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
    MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
    MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
    MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
    MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
    MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
    MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);

    MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
    MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
    MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
    MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
    MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
    MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
    MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
    MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
    MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
    MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
    MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
    MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
    MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
    MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
    MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
    MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);

    MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
    MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
    MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
    MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
    MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
    MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
    MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
    MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
    MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
    MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
    MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
    MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
    MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
    MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
    MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
    MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);

    MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
    MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
    MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
    MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
    MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
    MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
    MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
    MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
    MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
    MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
    MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
    MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
    MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
    MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
    MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
    MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);

    buf[0] += a;
    buf[1] += b;
    buf[2] += c;
    buf[3] += d;
}

#endif
#endif  /* MD5_CRYPT */