README
3.98 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
* Overview
A compiled sieve program consists of a sequence of cells. Each cell
is a pointer to sieve_op_t data, i.e. it points to an instruction handler
(sieve_instr_t type) or to a memory location containing sieve_value_t
structure. The exact interpretation of this pointer depends on the
value of program counter. The very first entry in a sieve program
(pc = 0) is always a NULL pointer. The next entry (pc = 1) is always
expected to contain a valid instruction handler. When executing a
program, the sieve runtime evaluator starts from pc = 1. It reads
the cell contents, interprets it as address of an instruction handler,
increments the program counter and executes the handler. The evaluator
stops executing the program when it encounters a NULL pointer.
When invoked, the instruction handler receives a single argument: a pointer
to the sieve_machine_t structure, describing current runtime environment.
If the handler needs any surplus arguments, it is its responsibility
to retrieve them from the program cells immediately following the
handler address and increment the pc value accordingly.
* Existing handlers
** Nop
Name: instr_nop
Arguments: None
Does nothing
** Push
Name: instr_push
Arguments: None
Pushes current numeric register on stack.
** Pop
Name: instr_pop
Arguments: None
Pops the top of stack value into the numeric register.
** Unconditional branch
Name: instr_branch
Arguments: [pc ] (number) Offset of the new cell.
** Branch if zero
Name: instr_brz
Arguments: [pc ] (number) Offset of the new cell.
** Branch if not zero
Name: instr_brnz
Arguments: [pc ] (number) Offset of the new cell.
** Logical NOT
Name: instr_not
Arguments: none
** Logical AND
Name: instr_allof
Arguments: [pc ] (number) Number of items to be popped from stack
** Logical OR
Name: instr_anyof
Arguments: [pc ] (number) Number of items to be popped from stack
** Action handler
Name: instr_action
Arguments: [pc ] (sieve_handler_t*) Pointer to the action handling function.
[pc+1] (list_t of sieve_value_t) A list of required arguments.
[pc+2] (list_t of sieve_runtime_tag_t) A list of tags.
[pc+3] (string) Name of the action (for debugging purposes).
** Test handler
Name: instr_test
Arguments: [pc ] (sieve_handler_t*) Pointer to the test handling function.
[pc+1] (list_t of sieve_value_t) A list of required arguments.
[pc+2] (list_t of sieve_runtime_tag_t) A list of tags.
[pc+3] (string) Name of the test (for debugging purposes).
* Conditional statement branching
A simple statement
IF cond list1 ELSE list2
is translated into the following program
# Compute the condition
.
.
.
brz L_ELSE
# Evaluate list1
.
.
.
br L_END
L_ELSE:
# Evaluate list2
.
.
.
L_END:
A more complex statement in the form:
IF cond1 list1 ELSIF cond2 list2 ELSE list3
is translated into the following program
# Compute the condition 1
.
.
.
brz L_ELSIF
# Evaluate list1
.
.
.
br L_END
L_ELSIF:
# Compute the condition 2
.
.
.
brz L_ELSE
# Evaluate list 2
.
.
.
br L_END
L_ELSE:
# Evaluate list 3
.
.
.
L_END:
Generally speaking, each ELSIF branch generates a code, similar to usual
IF ... ELSE sequence.
* Boolean shortcuts
Boolean shortcuts are implemented for coding ALLOF and ANYOF conditions.
The code these produce is shown in the next two subsections. Notice the
insertion of the two Nop statement after the last condition. These replace
the two slots used by the Brz or Brnz instruction, which would be useless,
since the next statement after ALLOF or ANYOF is guaranteed to be a branch
statement. This replacement speeds up the execution a little.
** ALLOF
ALLOF(cond1,cond2,cond3)
# Evaluate cond1
.
.
.
brz L_end
# Evaluate cond2
.
.
.
brz L_end
# Evaluate cond3
.
.
.
nop
nop
L_end:
.
** ANYOF
ALLOF(cond1,cond2,cond3)
# Evaluate cond1
.
.
.
brnz L_end
# Evaluate cond2
.
.
.
brnz L_end
# Evaluate cond3
.
.
.
nop
nop
L_end:
.
Local variables:
mode: outline
paragraph-separate: "[ ]*$"
end: